On Extensional Fuzzy Sets Generated by Factoraggregation | SpringerLink
Skip to main content

Abstract

We develop the concept of a general factoraggregation operator introduced by the authors on the basis of an equivalence relation and applied in two recent papers for analysis of bilevel linear programming solving parameters. In the paper this concept is generalized by using a fuzzy equivalence relation instead of the crisp one. We show how the generalized factoraggregation can be used for construction of extensional fuzzy sets and consider approximations of arbitrary fuzzy sets by extensional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators. Physical-Verlag, Heidelberg (2002)

    Book  MATH  Google Scholar 

  2. Detyniecki, M.: Fundamentals on Aggregation Operators, Berkeley (2001)

    Google Scholar 

  3. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press (2009)

    Google Scholar 

  4. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  5. Mattioli, G., Recasens, J.: Comparison of different algorithms of approximation by extensional fuzzy subsets. In: Bustince, H., Fernandez, J., Mesiar, R., Calvo, T. (eds.) Aggregation Functions in Theory and in Practise. AISC, vol. 228, pp. 307–317. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets. Fuzzy Sets and Systems 100, 327–342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Orlovs, P., Montvida, O., Asmuss, S.: A choice of bilevel linear programming solving parameters: factoraggregation approach. In: Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology. Advances in Intelligent Systems Research, vol. 32, pp. 489–496 (2013)

    Google Scholar 

  8. Orlovs, P., Montvida, O., Asmuss, S.: An analysis of bilevel linear programming solving parameters based on factoraggregation approach. In: Bustince, H., Fernandez, J., Mesiar, R., Calvo, T. (eds.) Aggregation Functions in Theory and in Practise. AISC, vol. 228, pp. 345–354. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Takaci, A.: General aggregation operators acting on fuzzy numbers induced by ordinary aggregation operators. Novi Sad J. Math. 33(2), 67–76 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Zadeh, L.: Similarity relations and fuzzy ordering. Inform. Sci. 3(2), 177–200 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zimmermann, H.J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems 1, 45–55 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Orlovs, P., Asmuss, S. (2014). On Extensional Fuzzy Sets Generated by Factoraggregation. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-08852-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08852-5_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08851-8

  • Online ISBN: 978-3-319-08852-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics