Generating Isotone Galois Connections on an Unstructured Codomain | SpringerLink
Skip to main content

Abstract

Given a mapping f : A → B from a partially ordered set A into an unstructured set B, we study the problem of defining a suitable partial ordering relation on B such that there exists a mapping g : B → A such that the pair of mappings (f,g) forms an isotone Galois connection between partially ordered sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antoni, L., Krajči, S., Krídlo, O., Macek, B., Pisková, L.: On heterogeneous formal contexts. Fuzzy Sets and Systems 234, 22–33 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bělohlávek, R.: Fuzzy Galois connections. Math. Logic Q. 45(4), 497–504 (1999)

    Article  MATH  Google Scholar 

  3. Bělohlávek, R., Konečný, J.: Concept lattices of isotone vs. antitone Galois connections in graded setting: Mutual reducibility revisited. Information Sciences 199, 133–137 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bělohlávek, R., Osička, P.: Triadic fuzzy Galois connections as ordinary connections. In: IEEE Intl Conf. on Fuzzy Systems (2012)

    Google Scholar 

  5. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer (2005)

    Google Scholar 

  6. Butka, P., Pócs, J., Pócsová, J.: On equivalence of conceptual scaling and generalized one-sided concept lattices. Information Sciences 259, 57–70 (2014)

    Article  MathSciNet  Google Scholar 

  7. Castellini, G., Koslowski, J., Strecker, G.: Closure operators and polarities. Annals of the New York Academy of Sciences 704, 38–52 (1993)

    Article  MathSciNet  Google Scholar 

  8. Cohen, D.A., Creed, P., Jeavons, P.G., Živný, S.: An Algebraic theory of complexity for valued constraints: Establishing a Galois Connection. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 231–242. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Denecke, K., Erné, M., Wismath, S.L.: Galois connections and applications, vol. 565. Springer (2004)

    Google Scholar 

  10. Díaz, J.C., Medina, J.: Multi-adjoint relation equations: Definition, properties and solutions using concept lattices. Information Sciences 253, 100–109 (2013)

    Article  MathSciNet  Google Scholar 

  11. Dubois, D., Prade, H.: Possibility theory and formal concept analysis: Characterizing independent sub-contexts. Fuzzy Sets and Systems 196, 4–16 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dzik, W., Järvinen, J., Kondo, M.: Intuitionistic propositional logic with Galois connections. Logic Journal of the IGPL 18(6), 837–858 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dzik, W., Järvinen, J., Kondo, M.: Representing expansions of bounded distributive lattices with Galois connections in terms of rough sets. International Journal of Approximate Reasoning 55(1), 427–435 (2014)

    Article  MathSciNet  Google Scholar 

  14. Erné, M., Koslowski, J., Melton, A., Strecker, G.E.: A primer on Galois connections. Annals of the New York Academy of Sciences 704, 103–125 (1993)

    Article  Google Scholar 

  15. Frascella, A.: Fuzzy Galois connections under weak conditions. Fuzzy Sets and Systems 172(1), 33–50 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On Galois Connections and Soft Computing. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 224–235. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Järvinen, J.: Pawlak’s information systems in terms of Galois connections and functional dependencies. Fundamenta Informaticae 75, 315–330 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Järvinen, J., Kondo, M., Kortelainen, J.: Logics from Galois connections. Int. J. Approx. Reasoning 49(3), 595–606 (2008)

    Article  MATH  Google Scholar 

  19. Kan, D.M.: Adjoint functors. Transactions of the American Mathematical Society 87(2), 294–329 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kerkhoff, S.: A general Galois theory for operations and relations in arbitrary categories. Algebra Universalis 68(3), 325–352 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Konecny, J.: Isotone fuzzy Galois connections with hedges. Information Sciences 181(10), 1804–1817 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices. Information Sciences 190, 95–106 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Melton, A., Schmidt, D.A., Strecker, G.E.: Galois connections and computer science applications. In: Poigné, A., Pitt, D., Rydeheard, D., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 299–312. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  24. Mu, S.-C., Oliveira, J.N.: Programming from Galois connections. The Journal of Logic and Algebraic Programming 81(6), 680–704 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ore, Ø.: Galois connections. Trans. Amer. Math. Soc. 55, 493–513 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  26. Restrepo, M., Cornelis, C., Gómez, J.: Duality, conjugacy and adjointness of approximation operators in covering-based rough sets. International Journal of Approximate Reasoning 55(1), 469–485 (2014)

    Article  MathSciNet  Google Scholar 

  27. Wolski, M.: Galois connections and data analysis. Fundamenta Informaticae 60, 401–415 (2004)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodríguez, F.J. (2014). Generating Isotone Galois Connections on an Unstructured Codomain. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-08852-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08852-5_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08851-8

  • Online ISBN: 978-3-319-08852-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics