Abstract
An imprecise point is a point p with an associated imprecision region \({\mathcal{I}}_p\) indicating the set of possible locations of the point p. We study separability problems for a set R of red imprecise points and a set B of blue imprecise points in \({\Bbb R}^2\), where the imprecision regions are axis-aligned rectangles and each point p ∈ R ∪ B is drawn uniformly at random from \({\mathcal{I}}_p\). Our results include algorithms for finding certain separators (separating R from B with probability 1), possible separators (separating R from B with non-zero probability), most likely separators (separating R from B with maximal probability), and maximal separators (maximizing the expected number of correctly classified points).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Berg, M., Mumford, E., Roeloffzen, M.: Finding structures on imprecise points. In: 26th Europ. Workshop Comput. Geom., pp. 85–88 (2010)
Chan, T.M.: Low-dimensional linear programming with violations. SIAM J. Comput. 34, 879–893 (2005)
Cortés, C., Díaz-Báñez, J.M., Pérez-Lantero, P., Seara, C., Urrutia, J., Ventura, I.: Bichromatic separability with two boxes: A general approach. J. Alg. 64, 79–88 (2009)
Davoodi, M., Khanteimouri, P., Sheikhi, F., Mohades, A.: Data imprecision under λ-geometry: Finding the largest axis-aligned bounding box. In: Abstracts 27th Europ. Workshop Comput. Geom., pp. 135–138 (2011)
Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. J. Comput. Syst. Sci. 38(1), 165–194 (1989)
Edelsbrunner, H., Preparata, F.P.: Minimum polygonal separation. Inf. Comput. 77, 218–232 (1988)
Everett, H., Robert, J.-M., van Kreveld, M.: An optimal algorithm for computing (\(\leqslant{K}\))-levels, with applications. Int. J. Comput. Geom. Appl. 60, 247–261 (1996)
Fekete, S.: On the complexity of min-link red-blue separation (1992) (manuscript)
Hershberger, J.: Finding the upper envelope of n line segments in O(n logn) time. Inf. Proc. Lett. 33, 169–174 (1989)
Houle, M.F.: Weak separability of sets. PhD thesis, McGill Univeristy (1989)
Houle, M.F.: Algorithms for weak and wide separation of sets. Discr. Appl. Math. 45, 139–159 (1993)
Hurtado, F., Noy, M., Ramos, P.A., Seara, C.: Separating objects in the plane by wedges and strips. Discr. Appl. Math. 109, 109–138 (2001)
van Kreveld, M., van Lankveld, T., Veltkamp, R.: Identifying well-covered minimal bounding rectangles in 2D point data. In: Abstracts 25th Europ. Workshop Comput. Geom., pp. 277–280 (2009)
Löffler, M.: Data Imprecision in Computational Geometry. PhD thesis, Utrecht University (2009)
Löffler, M., van Kreveld, M.: Largest and smallest convex hulls for imprecise points. Algorithmica 56, 235–269 (2010)
Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. Theory Appl. 43, 419–433 (2010)
Megiddo, N.: Linear-time algorithms for linear programming in ℝ3 and related problems. SIAM J. Comput. 12, 759–776 (1983)
Myers, Y., Joskowicz, L.: Uncertain geometry with dependencies. In: Proc. 14th ACM Symp. Solid Phys. Mod., pp. 159–164 (2010)
O’Rourke, J., Rao Kosaraju, S., Megiddo, N.: Computing circular separability. Discr. Comput. Geom. 1, 105–113 (1986)
Salesin, D., Stolfi, J., Guibas, L.J.: Epsilon geometry: building robust algorithms from imprecise computations. In: Proc. 5th ACM Symp. Comput. Geom., pp. 208–217 (1989)
Sheikhi, F., de Berg, M., Mohades, A., Davoodi Monfared, M.: Finding monochromatic L-shapes in bichromatic point sets. In: Proc. 22nd Canadian Conf. Comput. Geom., pp. 269–272 (2010); To appear in Comput. Geom. Theory Appl.
Seara, C.: On Geometric Separability. PhD thesis, Universidad Politécnica de Catalunya (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
de Berg, M., Mehrabi, A.D., Sheikhi, F. (2014). Separability of Imprecise Points. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-08404-6_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08403-9
Online ISBN: 978-3-319-08404-6
eBook Packages: Computer ScienceComputer Science (R0)