Separability of Imprecise Points | SpringerLink
Skip to main content

Separability of Imprecise Points

  • Conference paper
Algorithm Theory – SWAT 2014 (SWAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Included in the following conference series:

  • 1140 Accesses

Abstract

An imprecise point is a point p with an associated imprecision region \({\mathcal{I}}_p\) indicating the set of possible locations of the point p. We study separability problems for a set R of red imprecise points and a set B of blue imprecise points in \({\Bbb R}^2\), where the imprecision regions are axis-aligned rectangles and each point p ∈ R ∪ B is drawn uniformly at random from \({\mathcal{I}}_p\). Our results include algorithms for finding certain separators (separating R from B with probability 1), possible separators (separating R from B with non-zero probability), most likely separators (separating R from B with maximal probability), and maximal separators (maximizing the expected number of correctly classified points).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Berg, M., Mumford, E., Roeloffzen, M.: Finding structures on imprecise points. In: 26th Europ. Workshop Comput. Geom., pp. 85–88 (2010)

    Google Scholar 

  2. Chan, T.M.: Low-dimensional linear programming with violations. SIAM J. Comput. 34, 879–893 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cortés, C., Díaz-Báñez, J.M., Pérez-Lantero, P., Seara, C., Urrutia, J., Ventura, I.: Bichromatic separability with two boxes: A general approach. J. Alg. 64, 79–88 (2009)

    Article  MATH  Google Scholar 

  4. Davoodi, M., Khanteimouri, P., Sheikhi, F., Mohades, A.: Data imprecision under λ-geometry: Finding the largest axis-aligned bounding box. In: Abstracts 27th Europ. Workshop Comput. Geom., pp. 135–138 (2011)

    Google Scholar 

  5. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. J. Comput. Syst. Sci. 38(1), 165–194 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edelsbrunner, H., Preparata, F.P.: Minimum polygonal separation. Inf. Comput. 77, 218–232 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Everett, H., Robert, J.-M., van Kreveld, M.: An optimal algorithm for computing (\(\leqslant{K}\))-levels, with applications. Int. J. Comput. Geom. Appl. 60, 247–261 (1996)

    Article  Google Scholar 

  8. Fekete, S.: On the complexity of min-link red-blue separation (1992) (manuscript)

    Google Scholar 

  9. Hershberger, J.: Finding the upper envelope of n line segments in O(n logn) time. Inf. Proc. Lett. 33, 169–174 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Houle, M.F.: Weak separability of sets. PhD thesis, McGill Univeristy (1989)

    Google Scholar 

  11. Houle, M.F.: Algorithms for weak and wide separation of sets. Discr. Appl. Math. 45, 139–159 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hurtado, F., Noy, M., Ramos, P.A., Seara, C.: Separating objects in the plane by wedges and strips. Discr. Appl. Math. 109, 109–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. van Kreveld, M., van Lankveld, T., Veltkamp, R.: Identifying well-covered minimal bounding rectangles in 2D point data. In: Abstracts 25th Europ. Workshop Comput. Geom., pp. 277–280 (2009)

    Google Scholar 

  14. Löffler, M.: Data Imprecision in Computational Geometry. PhD thesis, Utrecht University (2009)

    Google Scholar 

  15. Löffler, M., van Kreveld, M.: Largest and smallest convex hulls for imprecise points. Algorithmica 56, 235–269 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. Theory Appl. 43, 419–433 (2010)

    Article  MATH  Google Scholar 

  17. Megiddo, N.: Linear-time algorithms for linear programming in ℝ3 and related problems. SIAM J. Comput. 12, 759–776 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Myers, Y., Joskowicz, L.: Uncertain geometry with dependencies. In: Proc. 14th ACM Symp. Solid Phys. Mod., pp. 159–164 (2010)

    Google Scholar 

  19. O’Rourke, J., Rao Kosaraju, S., Megiddo, N.: Computing circular separability. Discr. Comput. Geom. 1, 105–113 (1986)

    Article  MATH  Google Scholar 

  20. Salesin, D., Stolfi, J., Guibas, L.J.: Epsilon geometry: building robust algorithms from imprecise computations. In: Proc. 5th ACM Symp. Comput. Geom., pp. 208–217 (1989)

    Google Scholar 

  21. Sheikhi, F., de Berg, M., Mohades, A., Davoodi Monfared, M.: Finding monochromatic L-shapes in bichromatic point sets. In: Proc. 22nd Canadian Conf. Comput. Geom., pp. 269–272 (2010); To appear in Comput. Geom. Theory Appl.

    Google Scholar 

  22. Seara, C.: On Geometric Separability. PhD thesis, Universidad Politécnica de Catalunya (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

de Berg, M., Mehrabi, A.D., Sheikhi, F. (2014). Separability of Imprecise Points. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics