Combining Support Vector Machines and Segmentation Algorithms for Efficient Anomaly Detection: A Petroleum Industry Application | SpringerLink
Skip to main content

Combining Support Vector Machines and Segmentation Algorithms for Efficient Anomaly Detection: A Petroleum Industry Application

  • Conference paper
International Joint Conference SOCO’14-CISIS’14-ICEUTE’14

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 299))

  • 1657 Accesses

Abstract

Anomaly detection is the problem of finding patterns in data that do not conform to expected behavior. Similarly, when patterns are numerically distant from the rest of sample, anomalies are indicated as outliers. Anomaly detection had recently attracted the attention of the research community for real-world applications. The petroleum industry is one of the application contexts where these problems are present. The correct detection of such types of unusual information empowers the decision maker with the capacity to act on the system in order to correctly avoid, correct, or react to the situations associated with them. In that sense, heavy extraction machines for pumping and generation operations like turbomachines are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. For dealing with this and with the lack of labeled data, in this paper we propose a combination of a fast and high quality segmentation algorithm with a one-class support vector machine approach for efficient anomaly detection in turbomachines. As result we perform empirical studies comparing our approach to other methods applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection. In: Applications of Data Mining in Computer Security, pp. 77–101. Springer (2002)

    Google Scholar 

  2. King, S., King, D., Astley, K., Tarassenko, L., Hayton, P., Utete, S.: The use of novelty detection techniques for monitoring high-integrity plant. In: Proceedings of the 2002 International Conference on Control Applications, vol. 1, pp. 221–226. IEEE (2002)

    Google Scholar 

  3. Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. International Journal of Neural Systems 21(4), 277–296 (2011)

    Article  Google Scholar 

  4. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Information Fusion 16, 3–17 (2014)

    Article  Google Scholar 

  5. Calvo-Rolle, J.L., Corchado, E.: A bio-inspired knowledge system for improving combined cycle plant control tuning. Neurocomputing 126, 95–105 (2014)

    Article  Google Scholar 

  6. Keogh, E., Lonardi, S., Chiu, B.: c.: Finding surprising patterns in a time series database in linear time and space. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 550–556. ACM (2002)

    Google Scholar 

  7. Ratsch, G., Mika, S., Scholkopf, B., Muller, K.: Constructing boosting algorithms from svms: an application to one-class classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1184–1199 (2002)

    Article  Google Scholar 

  8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  9. Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969)

    Article  Google Scholar 

  10. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD 2000, pp. 93–104. ACM, New York (2000)

    Chapter  Google Scholar 

  11. Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: LOCI: Fast outlier detection using the local correlation integral. In: Proceedings 19th International Conference on Data Engineering (ICDE 2003), pp. 315–326. IEEE Press (2003)

    Google Scholar 

  12. Ringberg, H., Soule, A., Rexford, J., Diot, C.: Sensitivity of pca for traffic anomaly detection. In: ACM SIGMETRICS Performance Evaluation Review, vol. 35, pp. 109–120. ACM (2007)

    Google Scholar 

  13. Fujimaki, R., Yairi, T., Machida, K.: An approach to spacecraft anomaly detection problem using kernel feature space. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 401–410. ACM (2005)

    Google Scholar 

  14. Barbara, D., Wu, N., Jajodia, S.: Detecting novel network intrusions using Bayes estimators. In: First SIAM Conference on Data Mining. SIAM (2001)

    Google Scholar 

  15. Roth, V.: Outlier detection with one-class kernel Fisher discriminants. In: Advances in Neural Information Processing Systems, vol. 17, pp. 1169–1176. MIT Press (2005)

    Google Scholar 

  16. Bouchard, D.: Automated time series segmentation for human motion analysis. Center for Human Modeling and Simulation, University of Pennsylvania (2006)

    Google Scholar 

  17. Bingham, E., Gionis, A., Haiminen, N., Hiisilä, H., Mannila, H., Terzi, E.: Segmentation and dimensionality reduction. In: SDM. SIAM (2006)

    Google Scholar 

  18. Lemire, D.: A better alternative to piecewise linear time series segmentation. In: SDM. SIAM (2007)

    Google Scholar 

  19. Hunter, J., McIntosh, N.: Knowledge-based event detection in complex time series data. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J.C. (eds.) AIMDM 1999. LNCS (LNAI), vol. 1620, pp. 271–280. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Vlachos, M., Lin, J., Keogh, E., Gunopulos, D.: A wavelet-based anytime algorithm for k-means clustering of time series. In: Proc. Workshop on Clustering High Dimensionality Data and Its Applications. Citeseer (2003)

    Google Scholar 

  21. Bollobás, B., Das, G., Gunopulos, D., Mannila, H.: Time-series similarity problems and well-separated geometric sets. In: Proceedings of the Thirteenth Annual Symposium on Computational Geometry, pp. 454–456. ACM (1997)

    Google Scholar 

  22. Martí, L.: Scalable Multi-Objective Optimization. PhD thesis, Departmento de Informtica, Universidad Carlos III de Madrid, Colmenarejo, Spain (2011)

    Google Scholar 

  23. Neyman, J.: Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society A 236, 333–380 (1937)

    Article  Google Scholar 

  24. Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data Analysis, Wadsworth, Belmont (1983)

    Google Scholar 

  25. Di Eugenio, B., Glass, M.: The Kappa statistic: A second look. Computational Linguistics 30(1), 95–101 (2004)

    Article  MATH  Google Scholar 

  26. Salzberg, S.L.: On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1(3), 317–328 (1997)

    Article  Google Scholar 

  27. McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12(2), 153–157 (1947)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Martí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Martí, L., Sanchez-Pi, N., Molina, J.M., García, A.C.B. (2014). Combining Support Vector Machines and Segmentation Algorithms for Efficient Anomaly Detection: A Petroleum Industry Application. In: de la Puerta, J., et al. International Joint Conference SOCO’14-CISIS’14-ICEUTE’14. Advances in Intelligent Systems and Computing, vol 299. Springer, Cham. https://doi.org/10.1007/978-3-319-07995-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07995-0_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07994-3

  • Online ISBN: 978-3-319-07995-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics