Neural Networks Using Hausdorff Distance, SURF and Fisher Algorithms for Ear Recognition | SpringerLink
Skip to main content

Neural Networks Using Hausdorff Distance, SURF and Fisher Algorithms for Ear Recognition

  • Conference paper
International Joint Conference SOCO’14-CISIS’14-ICEUTE’14

Abstract

The purpose of this paper is to offer an approach in the biometrics analysis field, using ears to recognize people. This study uses Hausdorff distance as a preprocessing stage adding sturdiness to increase the performance filtering for the subjects to use for testing stage of the neural network. Then, the system computes Speeded Up Robust Features (SURF) and Fisher Linear Discriminant Analysis (LDA) as an input of two neural networks to detect and recognize a person by the patterns of its ear. To show the applied theory in the experimental results; it also includes an application developed with Microsoft .net. The investigation which enhances the ear recognition process showed robustness through the integration of Hausdorff, LDA and SURF in neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pflug, A., Busch, C.: Ear Biometrics: A Survey of Detection, Feature Extraction and Recognition Methods. IET Biometrics 1(2), 114–129 (2012)

    Article  Google Scholar 

  2. Ayman, A., Arun, R., Christina, H., Harrison, F., Ann, M., Nixon, M.S.: A Survey on Ear Biometrics. ACM Computing Surveys 45 (2013)

    Google Scholar 

  3. Kumar, A., Hanmandlu, M., Kuldeep, M., Gupta, H.M.: Automatic ear detection for online biometric applications. In: NCVPRIPG, pp. 146–149 (2011)

    Google Scholar 

  4. Cummings, A., Nixon, M., Carter, J.: A novel ray analogy for enrolment of ear biometrics. In: BTAS, pp. 1–6 (2010)

    Google Scholar 

  5. Victor, B., Bowyer, K., Sarkar, S.: An evaluation of face and ear biometrics. In: ICPR, vol. 1, pp. 429–432 (2002)

    Google Scholar 

  6. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection, New Haven. Yale University (1997)

    Google Scholar 

  7. Castrillón-Santana, M., Lorenzo-Navarro, J., Hernández-Sosa, D.: An Study on Ear Detection and Its Applications to Face Detection, pp. 313–322 (2011)

    Google Scholar 

  8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  9. Hurley, D.J., Nixon, M.S., Carter, J.N.: Force field feature extraction for ear biometrics. Computer Vision and Image Understanding (2005)

    Google Scholar 

  10. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding, 346–359 (2008)

    Google Scholar 

  11. Jolliffe, I.T.: Principal Components Analysis, 2nd edn. Springer, New York (2002)

    Google Scholar 

  12. Bustard, J., Nixon, M.: 3D morphable model construction for robust ear and face recognition. In: CVPR, pp. 2582–2589 (2010)

    Google Scholar 

  13. Calvo-Rolle, J.L., Corchado, E.: A Bio-inspired knowledge system for improving combined cycle plant control tuning. Neurocomputing 126, 95–105 (2014)

    Article  Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence (2005)

    Google Scholar 

  15. Lin, K.-H., Lam, K.-M., Siu, W.-C.: Spatially eigen-weighted Hausdorff distances for human face recognition. Polytechnic University, Hong Kong (2002)

    Google Scholar 

  16. Chang, K., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of ear and face images in appearance-based biometrics (2003)

    Google Scholar 

  17. Yuan, L., Mu, Z.-C.: Ear detection based on skin-color and contour information. In: ICMLC, vol. 4, pp. 2213–2217 (2007)

    Google Scholar 

  18. Burge, M., Burger, W.: Ear biometrics in computer vision. In: ICPR, vol. 2, pp. 822–826 (2000)

    Google Scholar 

  19. Woźniak, M., Graña, M.: Emilio Corchado A survey of multiple classifier systems as hybrid systems. Information Fusion 16, 3–17

    Google Scholar 

  20. Turk, M., Pentland, A.: Eigenfaces for Recognition (1991)

    Google Scholar 

  21. Yan, P., Bowyer, K.W.: Empirical evaluation of advanced ear biometrics. In: Proceedings of International CVPR Workshop, vol. 3, pp. 41–48 (2005)

    Google Scholar 

  22. Ansari, S., Gupta, P.: Localization of ear using outer helix curve of the ear. In: ICCTA, pp. 688–692 (2007)

    Google Scholar 

  23. Attarchi, S., Faez, K., Rafiei, A.: A new segmentation approach for ear recognition. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 1030–1037. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Transactions on Image Processing, 2029–2039 (2008)

    Google Scholar 

  25. Prakash, S., Gupta, P.: An Efficient Ear Localization Technique (2012)

    Google Scholar 

  26. Wagner, P.: Fisherfaces, http://www.bytefish.de/blog/fisherfaces/ (January 13, 2013)

  27. USTB Database, University of Science and Technology Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Luis Galdámez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Galdámez, P.L., Arrieta, M.A.G., Ramón, M.R. (2014). Neural Networks Using Hausdorff Distance, SURF and Fisher Algorithms for Ear Recognition. In: de la Puerta, J., et al. International Joint Conference SOCO’14-CISIS’14-ICEUTE’14. Advances in Intelligent Systems and Computing, vol 299. Springer, Cham. https://doi.org/10.1007/978-3-319-07995-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07995-0_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07994-3

  • Online ISBN: 978-3-319-07995-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics