The Learning of Neuro-Fuzzy Classifier with Fuzzy Rough Sets for Imprecise Datasets | SpringerLink
Skip to main content

The Learning of Neuro-Fuzzy Classifier with Fuzzy Rough Sets for Imprecise Datasets

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8467))

Included in the following conference series:

Abstract

The paper concerns the architecture of a neuro-fuzzy classifier with fuzzy rough sets which has been developed to process imprecise data. A raw output of such system is an interval which has to be interpreted in terms of classification afterwards. To obtain a credible answer, the interval should be as narrow as possible; however, its width cannot be zero as long as input values are imprecise. In the paper, we discuss the determination of classifier parameters using the standard gradient learning technique. The effectiveness of the proposed method is confirmed by several simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cpałka, K.: A new method for design and reduction of neuro-fuzzy classification systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)

    Article  Google Scholar 

  2. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Transactions on Systems 4(9), 1450–1458 (2005)

    Google Scholar 

  3. Czogala, E., Roderer, H.: On the control of allpass components using conventional, fuzzy and rough fuzzy controllers. In: Proceedings of IEEE International Conference on Fuzzy Systems, International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium, vol. 3, pp. 1405–1412 (1995)

    Google Scholar 

  4. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17(2-3), 191–209 (1990)

    Article  MATH  Google Scholar 

  5. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Sowiski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)

    Chapter  Google Scholar 

  6. Greblicki, W., Rutkowski, L.: Density-free bayes risk consistency of nonparametric pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

    Article  Google Scholar 

  7. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-varying regression. Annals of the Institute of Statistical Mathematics 35(1), 215–228 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning 41(2), 179–211 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Greenfield, S., Chiclana, F.: Type-reduction of the discretized interval type-2 fuzzy set: approaching the continuous case through progressively finer discretization. Journal of Artificial Intelligence and Soft Computing Research 1(3), 193 (2011)

    Google Scholar 

  10. Inuiguchi, M., Tanino, T.: New fuzzy rough sets based on certainty qualification. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 277–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Jaworski, M., Duda, P., Pietruczuk, L.: On fuzzy clustering of data streams with concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 82–91. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge and Data Engineering 16, 1457–1471 (2004)

    Article  Google Scholar 

  13. Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15(1), 73–89 (2007)

    Article  Google Scholar 

  14. Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Korytkowski, M., Scherer, R., Rutkowski, L.: On combining backpropagation with boosting. In: 2006 International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, Vancouver, BC, Canada, pp. 1274–1277 (2006)

    Google Scholar 

  16. Mouzouris, G.C., Mendel, J.M.: Nonsingleton fuzzy logic systems: theory and application. IEEE Transactions on Fuzzy Systems 5(1), 56–71 (1997)

    Article  Google Scholar 

  17. Nowak, B.A., Nowicki, R.K.: Learning in rough-neuro-fuzzy system for data with missing values. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 501–510. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Nowicki, R.: On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. Knowl. Data Eng. 20(9), 1239–1253 (2008)

    Article  Google Scholar 

  19. Nowicki, R.: Rough-neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst., Man, Cybern. B 39 (2009)

    Google Scholar 

  20. Nowicki, R.K., Starczewski, J.T.: On non-singleton fuzzification with DCOG defuzzification. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 168–174. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Peteiro-Barral, D., Guijarro-Bardinas, B., Perez-Sanchez, B.: Learning from heterogeneously distributed data sets using artificial neural networks and genetic algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(1), 5–20 (2012)

    Google Scholar 

  23. Pietruczuk, L., Duda, P., Jaworski, M.: A new fuzzy classifier for data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 318–324. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 459–473. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rutkowska, D., Nowicki, R., Rutkowski, L.: Singleton and non-singleton fuzzy systems with nonparametric defuzzification. In: Strumillo, P., kaminski, W., Skrzypski, J. (eds.) Computational Intelligence and Application. STUDFUZZ, vol. 23, pp. 292–301. Springer, Heidelberg (1999)

    Google Scholar 

  27. Rutkowska, D., Nowicki, R.: Implication-based neuro–fuzzy architectures. International Journal of Applied Mathematics and Computer Science 10(4), 675–701 (2000)

    MATH  Google Scholar 

  28. Rutkowska, D., Rutkowski, L., Nowicki, R.: On processing of noisy data by fuzzy inference neural networks. In: Proceedings of the IASTED International Conference, Signal and Image Processing, Nassau, Bahamas, pp. 314–318 (October 1999)

    Google Scholar 

  29. Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Transactions on Circuits and Systems 33(8), 812–818 (1986)

    Article  MATH  Google Scholar 

  30. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Transactions on Neural Networks 15(4), 811–827 (2004)

    Article  MathSciNet  Google Scholar 

  31. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Transactions on Knowledge and Data Engineering 26(1), 108–119 (2014)

    Article  Google Scholar 

  32. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the mcdiarmid’s bound. IEEE Transactions on Knowledge and Data Engineering 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  33. Rutkowski, L., Przybył, A., Cpałka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Transactions on Industrial Electronics 59(2), 1238–1247 (2012)

    Article  Google Scholar 

  34. Rutkowski, L.: On bayes risk consistent pattern recognition procedures in a quasi-stationary environment. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4(1), 84–87 (1982)

    Article  MathSciNet  Google Scholar 

  35. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple fourier series. Pattern Recognition Letters 8(4), 213–216 (1988)

    Article  MATH  Google Scholar 

  36. Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Signal Processing 18(2), 129–137 (1989)

    Article  MathSciNet  Google Scholar 

  37. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)

    Google Scholar 

  38. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Information Sciences 266, 1–15 (2014)

    Google Scholar 

  39. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  40. Sarkar, M.: Rough fuzzy functions in classification. Fuzzy Sets and Systems 132(2), 353–369 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sarkar, M., Yegnanarayana, B.: Rough fuzzy set theoretic approach to evaluate the importance of input features in classification. In: Proceedings of International Conference on Neural Networks — ICNN 1997, Texas, USA, June 9-12, pp. 1590–1595 (1997)

    Google Scholar 

  42. Scherer, R.: Neuro-fuzzy relational systems for nonlinear approximation and prediction. Nonlinear Analysis 71, e1420–e1425 (2009)

    Google Scholar 

  43. Scherer, R., Rutkowski, L.: Connectionist fuzzy relational systems. In: Hagamuge, S., Wang, L. (eds.) Computational Intelligence for Modelling and Control. SCI, vol. 2, pp. 35–47. Springer, Heidelberg (2005)

    Google Scholar 

  44. Starczewski, J.T.: Generalized uncertain fuzzy logic systems. In: Starczewski, J.T. (ed.) Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty. STUDFUZZ, vol. 284, pp. 137–179. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  45. Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. Journal of Artificial Intelligence and Soft Computing Research 1(1), 59–79 (2011)

    Google Scholar 

  46. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nowak, B.A., Nowicki, R.K., Starczewski, J.T., Marvuglia, A. (2014). The Learning of Neuro-Fuzzy Classifier with Fuzzy Rough Sets for Imprecise Datasets. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07173-2_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07172-5

  • Online ISBN: 978-3-319-07173-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics