Online Seizure Detection from EEG and ECG Signals for Monitoring of Epileptic Patients | SpringerLink
Skip to main content

Online Seizure Detection from EEG and ECG Signals for Monitoring of Epileptic Patients

  • Conference paper
Artificial Intelligence: Methods and Applications (SETN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8445))

Included in the following conference series:

Abstract

In this article, we investigate the performance of a seizure detection module for online monitoring of epileptic patients. The module is using as input data streams from electroencephalographic and electrocardiographic recordings. The architecture of the module consists of time and frequency domain feature extraction followed by classification. Four classification algorithms were evaluated on three epileptic subjects. The best performance was achieved by the support vector machine algorithm, with more than 90% for two of the subjects and slightly lower than 90% for the third subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shoeb, A., Edwards, H., Connolly, J., Bourgeois, B., Treves, S.T., Guttag, J.: Patient-specific seizure onset detection. Epilepsy Behav. 5(4), 483–498 (2004)

    Article  Google Scholar 

  2. Corsini, J., Shoker, L., Sanei, S., Alarcón, G.: Epileptic seizure predictability from scalp EEG incorporating constrained blind source separation. IEEE Trans. Biomed. Eng. 53(5), 790–799 (2006)

    Article  Google Scholar 

  3. Hunyadi, B., Signoretto, M., Van Paesschen, W., Suykens, J.A., Van Huffel, S., De Vos, M.: Incorporating structural information from the multichannel EEG improves patient-specific seizure detection. Clin. Neurophysiol. 123(12), 2352–2361 (2012)

    Article  Google Scholar 

  4. Valderrama, M., Nikolopoulos, S., Adam, C., Navarro, V., Le Van Quyen, M.: Patient-specific seizure prediction using a multi-feature and multi-modal EEG-ECG classification. In: XII Med. Conf. on Medical and Biological Engineering and Computing, vol. 29, pp. 77–80 (2010)

    Google Scholar 

  5. Mohseni, H.R., Maghsoudi, A., Shamsollahi, M.B.: Seizure detection in EEG signals: A comparison of different approaches. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 6724–6727 (2006)

    Google Scholar 

  6. Nasehi, S., Pourghassem, H.: Seizure Detection Algorithms Based on Analysis of EEG and ECG Signals: A Survey. Neurophysiology 44(2), 174–186 (2012)

    Article  Google Scholar 

  7. Greene, B.R., Boylan, G.B., Reilly, R.B., de Chazal, P., Connolly, S.: Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin. Neurophysiol. 118(6), 1348–1359 (2007)

    Article  Google Scholar 

  8. Varon, C., Jansen, K., Lagae, L., Van Huffel, S.: Detection of epileptic seizures by means of morphological changes in the ECG, ftp://ftp.esat.kuleuven.be/pub/SISTA/cvaron/13-163.pdf

  9. Zijlmans, M., Flanagan, D., Gotman, J.: Heart rate changes and ECG abnormalities during epileptic seizures: Prevalence and definition of an objective clinical sign. Epilepsia 43(8), 847–854 (2002)

    Article  Google Scholar 

  10. Polat, K., Gunes, S.: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation 187(2), 1017–1026 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fazle Rabbi, A., Fazel-Rezai, R.: A Fuzzy Logic System for Seizure Onset Detection in Intracranial EEG. Computational Intelligence and Neuroscience 2012, Article ID 705140, 12 (2012)

    Google Scholar 

  12. ARMOR project, http://www.armor-project.eu/

  13. Sabarimalai, M., Soman, K.P.: A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control 7(2), 118–128 (2012)

    Article  Google Scholar 

  14. Witten, H.I., Frank, E.: Data Mining: practical machine learning tools and techniques. Morgan Kaufmann Publishing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mporas, I., Tsirka, V., Zacharaki, E.I., Koutroumanidis, M., Megalooikonomou, V. (2014). Online Seizure Detection from EEG and ECG Signals for Monitoring of Epileptic Patients. In: Likas, A., Blekas, K., Kalles, D. (eds) Artificial Intelligence: Methods and Applications. SETN 2014. Lecture Notes in Computer Science(), vol 8445. Springer, Cham. https://doi.org/10.1007/978-3-319-07064-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07064-3_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07063-6

  • Online ISBN: 978-3-319-07064-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics