Abstract
In this article, we investigate the performance of a seizure detection module for online monitoring of epileptic patients. The module is using as input data streams from electroencephalographic and electrocardiographic recordings. The architecture of the module consists of time and frequency domain feature extraction followed by classification. Four classification algorithms were evaluated on three epileptic subjects. The best performance was achieved by the support vector machine algorithm, with more than 90% for two of the subjects and slightly lower than 90% for the third subject.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shoeb, A., Edwards, H., Connolly, J., Bourgeois, B., Treves, S.T., Guttag, J.: Patient-specific seizure onset detection. Epilepsy Behav. 5(4), 483–498 (2004)
Corsini, J., Shoker, L., Sanei, S., Alarcón, G.: Epileptic seizure predictability from scalp EEG incorporating constrained blind source separation. IEEE Trans. Biomed. Eng. 53(5), 790–799 (2006)
Hunyadi, B., Signoretto, M., Van Paesschen, W., Suykens, J.A., Van Huffel, S., De Vos, M.: Incorporating structural information from the multichannel EEG improves patient-specific seizure detection. Clin. Neurophysiol. 123(12), 2352–2361 (2012)
Valderrama, M., Nikolopoulos, S., Adam, C., Navarro, V., Le Van Quyen, M.: Patient-specific seizure prediction using a multi-feature and multi-modal EEG-ECG classification. In: XII Med. Conf. on Medical and Biological Engineering and Computing, vol. 29, pp. 77–80 (2010)
Mohseni, H.R., Maghsoudi, A., Shamsollahi, M.B.: Seizure detection in EEG signals: A comparison of different approaches. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 6724–6727 (2006)
Nasehi, S., Pourghassem, H.: Seizure Detection Algorithms Based on Analysis of EEG and ECG Signals: A Survey. Neurophysiology 44(2), 174–186 (2012)
Greene, B.R., Boylan, G.B., Reilly, R.B., de Chazal, P., Connolly, S.: Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin. Neurophysiol. 118(6), 1348–1359 (2007)
Varon, C., Jansen, K., Lagae, L., Van Huffel, S.: Detection of epileptic seizures by means of morphological changes in the ECG, ftp://ftp.esat.kuleuven.be/pub/SISTA/cvaron/13-163.pdf
Zijlmans, M., Flanagan, D., Gotman, J.: Heart rate changes and ECG abnormalities during epileptic seizures: Prevalence and definition of an objective clinical sign. Epilepsia 43(8), 847–854 (2002)
Polat, K., Gunes, S.: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation 187(2), 1017–1026 (2007)
Fazle Rabbi, A., Fazel-Rezai, R.: A Fuzzy Logic System for Seizure Onset Detection in Intracranial EEG. Computational Intelligence and Neuroscience 2012, Article ID 705140, 12 (2012)
ARMOR project, http://www.armor-project.eu/
Sabarimalai, M., Soman, K.P.: A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control 7(2), 118–128 (2012)
Witten, H.I., Frank, E.: Data Mining: practical machine learning tools and techniques. Morgan Kaufmann Publishing
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Mporas, I., Tsirka, V., Zacharaki, E.I., Koutroumanidis, M., Megalooikonomou, V. (2014). Online Seizure Detection from EEG and ECG Signals for Monitoring of Epileptic Patients. In: Likas, A., Blekas, K., Kalles, D. (eds) Artificial Intelligence: Methods and Applications. SETN 2014. Lecture Notes in Computer Science(), vol 8445. Springer, Cham. https://doi.org/10.1007/978-3-319-07064-3_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-07064-3_37
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07063-6
Online ISBN: 978-3-319-07064-3
eBook Packages: Computer ScienceComputer Science (R0)