On Facial Expressions and Emotions RGB-D Database | SpringerLink
Skip to main content

On Facial Expressions and Emotions RGB-D Database

  • Conference paper
Beyond Databases, Architectures, and Structures (BDAS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 424))

Abstract

The goal of this paper is to present the idea of creating reference database of RGB-D video recordings for recognition of facial expressions and emotions. Two different formats of the recordings used for creation of two versions of the database are described and compared using different criteria. Examples of first applications using databases are also presented to evaluate their usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alyüz, N., Gökberk, B., Dibeklioğlu, H., Savran, A., Salah, A.A., Akarun, L., Sankur, B.: 3D face recognition benchmarks on the Bosphorus database with focus on facial expressions. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BIOID 2008. LNCS, vol. 5372, pp. 57–66. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bailenson, J., Pontikakis, E., Mauss, I., Gross, J., Jabon, M., Hutcherson, C., Nass, C., John, O.: Real-time classification of evoked emotions using facial feature tracking and physiological responses. International Journal of Human-Computer Studies 66, 303–317 (2008)

    Article  Google Scholar 

  3. Burgin, W., Pantofaru, C., Smart, W.: Using depth information to improve face detection. In: Proc. of the 6th Int. Conf. on Human-Robot Interaction, pp. 119–120 (2011)

    Google Scholar 

  4. Castrillon-Santana, M., Deniz-Suarez, O., Anton-Canalis, L., Lorenzo-Navarro, J.: Face and facial feature detection evaluation - performance evaluation of public domain Haar detectors for face and facial feature detection. In: Third Int. Conf. on Computer Vision Theory and Applications, VISAPP 2008, pp. 167–172 (2008)

    Google Scholar 

  5. Colombo, A., Cusano, C., Schettini, R.: UMB-DB: A database of partially occluded 3D faces. In: Proc. of ICCV 2011 Workshops, pp. 2113–2119 (2011)

    Google Scholar 

  6. Ekman, P., Friesen, W.: Facial Action Coding System. Consulting Psychologist Press (1978)

    Google Scholar 

  7. Grgic, M., Delac, K.: Face Recognition Homepage (March 02, 2014), http://www.face-rec.org/databases/

  8. Gunes, H., Piccardi, M.: Affect recognition from face and body: Early fusion vs. late fusion. In: Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 3437–3443 (2005)

    Google Scholar 

  9. Huynh, T., Min, R., Dugelay, J.-L.: An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part I. LNCS, vol. 7728, pp. 133–145. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Kolakowska, A.: A review of emotion recognition methods based on keystroke dynamics and mouse movements. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 548–555 (2013)

    Google Scholar 

  11. Kshirsagar, V., Baviskar, M., Gaikwad, M.: Face recognition using eigenfaces. In: Proc. of the 3rd Int. Conf. on Computer Research and Development (ICCRD), pp. 302–306 (2011)

    Google Scholar 

  12. Landowska, A.: Affect-awareness framework for intelligent tutoring systems. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 540–547 (2013)

    Google Scholar 

  13. Lucey, P., Cohn, J., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade (CK+): A complete dataset for action unit and emotion-specified expression. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Workshops), pp. 94–101 (2010)

    Google Scholar 

  14. Lyons, M., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. on Pattern Analysis and Machine Intelligence 21, 1357–1362 (1999)

    Article  Google Scholar 

  15. Moreno, A., Sanchez, A.: GavabDB: A 3D Face Database. In: Proc. of the 2nd COST Workshop on Biometrics on the Internet: Fundamentals, Advances and Applications, pp. 77–82 (2004)

    Google Scholar 

  16. Picard, R.: Affective computing: From laughter to IEEE. IEEE Transactions on Affective Computing 1, 11–17 (2010)

    Article  Google Scholar 

  17. Szwoch, M.: FEEDB: a multimodal database of facial expressions and emotions. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 524–531 (2013)

    Google Scholar 

  18. Szwoch, W.: Using physiological signals for emotion recognition. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 556–561 (2013)

    Google Scholar 

  19. Vizer, L., Zhou, L., Sears, A.: Automated stress detection using keystroke and linguistic features. Int. Journal of Human-Computer Studies 67, 870–886 (2009)

    Article  Google Scholar 

  20. Wang, S., Liu, Z., Lv, S., Lv, Y., Wu, G., Peng, P., Chen, F., Wang, X.: A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Transactions on Multimedia 12, 682–691 (2009)

    Article  Google Scholar 

  21. Wrobel, M.: Emotions in the software development process. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 518–523 (2013)

    Google Scholar 

  22. Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 39–58 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Szwoch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Szwoch, M. (2014). On Facial Expressions and Emotions RGB-D Database. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06932-6_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06931-9

  • Online ISBN: 978-3-319-06932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics