Abstract
The goal of this paper is to present the idea of creating reference database of RGB-D video recordings for recognition of facial expressions and emotions. Two different formats of the recordings used for creation of two versions of the database are described and compared using different criteria. Examples of first applications using databases are also presented to evaluate their usefulness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alyüz, N., Gökberk, B., Dibeklioğlu, H., Savran, A., Salah, A.A., Akarun, L., Sankur, B.: 3D face recognition benchmarks on the Bosphorus database with focus on facial expressions. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BIOID 2008. LNCS, vol. 5372, pp. 57–66. Springer, Heidelberg (2008)
Bailenson, J., Pontikakis, E., Mauss, I., Gross, J., Jabon, M., Hutcherson, C., Nass, C., John, O.: Real-time classification of evoked emotions using facial feature tracking and physiological responses. International Journal of Human-Computer Studies 66, 303–317 (2008)
Burgin, W., Pantofaru, C., Smart, W.: Using depth information to improve face detection. In: Proc. of the 6th Int. Conf. on Human-Robot Interaction, pp. 119–120 (2011)
Castrillon-Santana, M., Deniz-Suarez, O., Anton-Canalis, L., Lorenzo-Navarro, J.: Face and facial feature detection evaluation - performance evaluation of public domain Haar detectors for face and facial feature detection. In: Third Int. Conf. on Computer Vision Theory and Applications, VISAPP 2008, pp. 167–172 (2008)
Colombo, A., Cusano, C., Schettini, R.: UMB-DB: A database of partially occluded 3D faces. In: Proc. of ICCV 2011 Workshops, pp. 2113–2119 (2011)
Ekman, P., Friesen, W.: Facial Action Coding System. Consulting Psychologist Press (1978)
Grgic, M., Delac, K.: Face Recognition Homepage (March 02, 2014), http://www.face-rec.org/databases/
Gunes, H., Piccardi, M.: Affect recognition from face and body: Early fusion vs. late fusion. In: Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 3437–3443 (2005)
Huynh, T., Min, R., Dugelay, J.-L.: An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part I. LNCS, vol. 7728, pp. 133–145. Springer, Heidelberg (2013)
Kolakowska, A.: A review of emotion recognition methods based on keystroke dynamics and mouse movements. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 548–555 (2013)
Kshirsagar, V., Baviskar, M., Gaikwad, M.: Face recognition using eigenfaces. In: Proc. of the 3rd Int. Conf. on Computer Research and Development (ICCRD), pp. 302–306 (2011)
Landowska, A.: Affect-awareness framework for intelligent tutoring systems. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 540–547 (2013)
Lucey, P., Cohn, J., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade (CK+): A complete dataset for action unit and emotion-specified expression. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Workshops), pp. 94–101 (2010)
Lyons, M., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. on Pattern Analysis and Machine Intelligence 21, 1357–1362 (1999)
Moreno, A., Sanchez, A.: GavabDB: A 3D Face Database. In: Proc. of the 2nd COST Workshop on Biometrics on the Internet: Fundamentals, Advances and Applications, pp. 77–82 (2004)
Picard, R.: Affective computing: From laughter to IEEE. IEEE Transactions on Affective Computing 1, 11–17 (2010)
Szwoch, M.: FEEDB: a multimodal database of facial expressions and emotions. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 524–531 (2013)
Szwoch, W.: Using physiological signals for emotion recognition. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 556–561 (2013)
Vizer, L., Zhou, L., Sears, A.: Automated stress detection using keystroke and linguistic features. Int. Journal of Human-Computer Studies 67, 870–886 (2009)
Wang, S., Liu, Z., Lv, S., Lv, Y., Wu, G., Peng, P., Chen, F., Wang, X.: A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Transactions on Multimedia 12, 682–691 (2009)
Wrobel, M.: Emotions in the software development process. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 518–523 (2013)
Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 39–58 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Szwoch, M. (2014). On Facial Expressions and Emotions RGB-D Database. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-06932-6_37
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06931-9
Online ISBN: 978-3-319-06932-6
eBook Packages: Computer ScienceComputer Science (R0)