An Improved Algorithm for Fast and Accurate Classification of Sequences | SpringerLink
Skip to main content

An Improved Algorithm for Fast and Accurate Classification of Sequences

  • Conference paper
Beyond Databases, Architectures, and Structures (BDAS 2014)

Abstract

Understanding of biocenosis derived from environmental samples can help understanding the relationships between organisms and the environmental conditions of their occurrence. Therefore, the classification of DNA fragments that are selected from different places is an important issue in many studies. In this paper we report how to improve (in terms of speed and qualification accuracy) the algorithm of fast and accurate classification of sequences (FACS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antonellis, P., Kontopoulos, S., Makris, C., Plegas, Y., Tsirakis, N.: Semantic xml filtering on peer-to-peer networks using distributed bloom filters. In: WEBIST 2013 - Proceedings of the 9th International Conference on Web Information Systems and Technologies, pp. 133–136 (2013)

    Google Scholar 

  2. Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: GenBank. Nucleic Acids Research 41(D1), D36–D42 (2013)

    Google Scholar 

  3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  4. Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey. Internet Mathematics 1(4), 485–509 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Handelsman, J.: Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews 68(4), 669–685 (2004)

    Article  Google Scholar 

  6. Kennedy, J., O’Leary, N., Kiran, G., Morrissey, J., O’Gara, F., Selvin, J., Dobson, A.: Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. Journal of Applied Microbiology 111(4), 787–799 (2011)

    Article  Google Scholar 

  7. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in DNA sequences using a bloom filter. BMC Bioinformatics 12 (2011)

    Google Scholar 

  8. Mishra, A.K., Turuk, A.K.: Efficient mechanism to exchange group membership identities among nodes in wireless sensor networks. IET Wireless Sensor Systems 3(4), 289–297 (2013)

    Article  Google Scholar 

  9. Simon, C., Daniel, R.: Metagenomic Analyses: Past and Future Trends. Applied and Environmental Microbiology 77(4), 1153–1161 (2011)

    Article  Google Scholar 

  10. Stranneheim, H., Käller, M., Allander, T., Andersson, B., Arvestad, L., Lundeberg, J.: Classification of DNA sequences using Bloom filters. Bioinformatics 26(13), 1595–1600 (2010)

    Article  Google Scholar 

  11. The NIH HMP Working Group, Peterson, J., Garges, S., et al.: The NIH Human Microbiome Project. Genome Research 19(12), 2317–2323 (2009)

    Google Scholar 

  12. Wooley, J.C., Godzik, A., Friedberg, I.: A primer on metagenomics. PLoS Computational Biology 6(2) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Kawulok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kawulok, J., Deorowicz, S. (2014). An Improved Algorithm for Fast and Accurate Classification of Sequences. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06932-6_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06931-9

  • Online ISBN: 978-3-319-06932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics