Abstract
Understanding of biocenosis derived from environmental samples can help understanding the relationships between organisms and the environmental conditions of their occurrence. Therefore, the classification of DNA fragments that are selected from different places is an important issue in many studies. In this paper we report how to improve (in terms of speed and qualification accuracy) the algorithm of fast and accurate classification of sequences (FACS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Antonellis, P., Kontopoulos, S., Makris, C., Plegas, Y., Tsirakis, N.: Semantic xml filtering on peer-to-peer networks using distributed bloom filters. In: WEBIST 2013 - Proceedings of the 9th International Conference on Web Information Systems and Technologies, pp. 133–136 (2013)
Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: GenBank. Nucleic Acids Research 41(D1), D36–D42 (2013)
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)
Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey. Internet Mathematics 1(4), 485–509 (2004)
Handelsman, J.: Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews 68(4), 669–685 (2004)
Kennedy, J., O’Leary, N., Kiran, G., Morrissey, J., O’Gara, F., Selvin, J., Dobson, A.: Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. Journal of Applied Microbiology 111(4), 787–799 (2011)
Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in DNA sequences using a bloom filter. BMC Bioinformatics 12 (2011)
Mishra, A.K., Turuk, A.K.: Efficient mechanism to exchange group membership identities among nodes in wireless sensor networks. IET Wireless Sensor Systems 3(4), 289–297 (2013)
Simon, C., Daniel, R.: Metagenomic Analyses: Past and Future Trends. Applied and Environmental Microbiology 77(4), 1153–1161 (2011)
Stranneheim, H., Käller, M., Allander, T., Andersson, B., Arvestad, L., Lundeberg, J.: Classification of DNA sequences using Bloom filters. Bioinformatics 26(13), 1595–1600 (2010)
The NIH HMP Working Group, Peterson, J., Garges, S., et al.: The NIH Human Microbiome Project. Genome Research 19(12), 2317–2323 (2009)
Wooley, J.C., Godzik, A., Friedberg, I.: A primer on metagenomics. PLoS Computational Biology 6(2) (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kawulok, J., Deorowicz, S. (2014). An Improved Algorithm for Fast and Accurate Classification of Sequences. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-06932-6_32
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06931-9
Online ISBN: 978-3-319-06932-6
eBook Packages: Computer ScienceComputer Science (R0)