Optimization of Mechanical Structures Using Artificial Immune Algorithm | SpringerLink
Skip to main content

Optimization of Mechanical Structures Using Artificial Immune Algorithm

  • Conference paper
Beyond Databases, Architectures, and Structures (BDAS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 424))

Abstract

The paper is devoted to application of the artificial immune systems (artificial immune algorithm) to selected shape and topology optimization problems of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burczyński, T., Bereta, M., Poteralski, A., Szczepanik, M.: Immune computing: Intelligent methodology and its applications in bioengineering and computational mechanics. In: Advanced Structured Materials v1. Comput. Meth. Mech., Springer, Heidelberg (2010)

    Google Scholar 

  2. Burczyński, T., Długosz, A., Kuś, W., Orantek, P., Poteralski, A., Szczepanik, M.: Intelligent computing in evolutionary optimal shaping of solids. In: Proceedings of 3rd International Conference on Computing, Communications and Control Technologies, vol. 3, pp. 294–298 (2005)

    Google Scholar 

  3. Burczyński, T., Kuś, W., Długosz, A., Poteralski, A., Szczepanik, M.: Sequential and distributed evolutionary computations in structural optimization. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1069–1074. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Burczyński, T., Poteralski, A., Szczepanik, M.: enetic generation of 2-d and 3-d structures. In: Second, M.I.T. (ed.) Second M.I.T. Conference on Computational Fluid and Solid Mechanics Massachusetts, Institute of Technology Cambridge, MA 02139 U.S.A (2003)

    Google Scholar 

  5. Burczyński, T., Poteralski, A., Szczepanik, M.: Topological evolutionary computing in the optimal design of 2d and 3d structures. Eng. Optimiz. Taylor and Francis 39(7), 811–830 (2007)

    Article  Google Scholar 

  6. de Castro, L.N., Timmis, J.: Artificial immune systems as a novel soft computing paradigm. Soft Computing 7(8), 526–544 (2003)

    Article  Google Scholar 

  7. de Castro, L.N., Von Zuben, F.J.: Immune and neural network models: theoretical and empirical comparisons. International Journal of Computational Intelligence and Applications (IJCIA) 1(3), 239–257 (2001)

    Article  Google Scholar 

  8. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems 6, 239–251 (2002)

    Article  Google Scholar 

  9. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann (2001)

    Google Scholar 

  10. Momot, A., Małysiak-Mrozek, B.z., Kozielski, S., Mrozek, D., Hera, Ł., Górczyńska-Kosiorz, S., Momot, M.: Improving performance of protein structure similarity searching by distributing computations in hierarchical multi-agent system. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 320–329. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Mrozek, D., Małysiak-Mrozek, B.: An improved method for protein similarity searching by alignment of fuzzy energy signatures. International Journal of Computational Intelligence Systems 4(1), 75–88 (2011)

    Article  Google Scholar 

  12. Poteralski, A., Szczepanik, M., Dziatkiewicz, G., et al.: Immune identification of piezoelectric material constants using bem. Inverse Problems in Science And Engineering 1(19), 103–116 (2011)

    Article  Google Scholar 

  13. Poteralski, A., Szczepanik, M., Dziatkiewicz, G., Kuś, W., Burczyński, T.: Comparison between PSO and AIS on the basis of identification of material constants in piezoelectrics. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 569–581. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Poteralski, A., Szczepanik, M., Ptaszny, J., Kuś, W., Burczyński, T.: Hybrid artificial immune system in identification of room acoustic properties. In: Inverse Problems in Science and Engineering. Taylor & Francis (2013)

    Google Scholar 

  15. Ptak, M., Ptak, W.: Basics of immunology. Jagiellonian University Press, Cracow (2000) (in Polish)

    Google Scholar 

  16. Reynolds, C.W.: Flocks, herds, and schools, a distributed behavioral model. Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  17. Szczepanik, M., Poteralski, A., Długosz, A., Kuś, W., Burczyński, T.: Bio-inspired optimization of thermomechanical structures. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 79–90. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Szczepanik, M., Poteralski, A., Ptaszny, J., Burczyński, T.: Hybrid particle swarm optimizer and its application in identification of room acoustic properties. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 386–394. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Wierzchoń, S.: Artificial Immune Systems, Theory and Applications, EXIT, Warsaw (2001) ( in Polish )

    Google Scholar 

  20. Zienkiewicz, O., Taylor, R.: The finite element method, vol. I, II. McGraw-Hill (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Poteralski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Poteralski, A. (2014). Optimization of Mechanical Structures Using Artificial Immune Algorithm. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06932-6_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06931-9

  • Online ISBN: 978-3-319-06932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics