Time Series Forecasting with Volume Weighted Support Vector Machines | SpringerLink
Skip to main content

Time Series Forecasting with Volume Weighted Support Vector Machines

  • Conference paper
Beyond Databases, Architectures, and Structures (BDAS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 424))

Abstract

Accurate prediction of financial time series or their direction of changes may result in highly profitable returns. There are many approaches to build such models. One of them is to apply machine learning algorithms i.e. Neural Networks or Support Vector Machines. In this paper we would like to propose a modified version of Support Vector Machine classifier, Volume Weighted Support Vector Machine which has the ability to predict short term trends on the stock market. Modification is based on the assumption that incorporating transaction volume into penalty function may lead to better future trends forecasting. Experimental results obtained on the data set composed of daily quotations from 420 stocks from S&P500 Index showed that proposed method gives statistically better results than basic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ładyżyński, P., Żbikowski, K., Grzegorzewski, P.: Stock Trading with Random Forests, Trend Detection Tests and Force Index Volume Indicators. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 441–452. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Chen, S., Dai, Q.: Discounted least squares-improved circular back-propogation neural networks with applications in time series prediction. Neural Computing and Applications 14(3), 250–255 (2005), http://link.springer.com/10.1007/s00521-004-0461-9

    Article  MathSciNet  Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  4. Lai, R.K., Fan, C.Y., Huang, W.H., Chang, P.C.: Evolving and clustering fuzzy decision tree for financial time series data forecasting. Expert Systems with Applications 36(2), 3761–3773 (2009), http://linkinghub.elsevier.com/retrieve/pii/S0957417408001474

    Article  Google Scholar 

  5. Momot, A., Momot, M.: Perspektywy zastosowań metod statystycznych w konstrukcji strategii działania na rynkach kapitałowych – wykorzystanie systemów hierarchicznych oraz regularyzacji. Studia Informatica 34(2A), 263–274 (2013)

    Google Scholar 

  6. Murphy, J.J.: Technical Analysis of the Financial Markets. New York Institute of Finance (1999)

    Google Scholar 

  7. Platt, J.C.: Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Advances in Kernel Methods, pp. 185–208. MIT Press (1999)

    Google Scholar 

  8. Tay, F.E.H., Cao, L.J.: Modified support vector machines in financial time series forecasting. Neurocomputing 48, 847–861 (2002)

    Article  MATH  Google Scholar 

  9. Tay, F.E.H., Cao, L.: Application of support vector machines in financial time series forecasting. Omega 29, 309–317 (2001)

    Article  Google Scholar 

  10. Vapnik, V., Chervonenkis, A.J.: On The Uniform Convergence of Relative Frequencies of Events to their Probabilities. Theory of Probability and its Applications 16(2), 264–280 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Welch, B.L.: The generalization of “student’s” problem when several different population variances are involved. Biometrika 34, 28–35 (1947)

    MATH  MathSciNet  Google Scholar 

  12. Yu, H., Kim, S.: SVM Tutorial – Classification, Regression and Ranking. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 479–506. Springer, Heidelberg (2012), http://link.springer.com/10.1007/978-3-540-92910-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Żbikowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Żbikowski, K. (2014). Time Series Forecasting with Volume Weighted Support Vector Machines. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06932-6_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06931-9

  • Online ISBN: 978-3-319-06932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics