The Incompleteness Factor Method as a Support of Inference in Decision Support Systems | SpringerLink
Skip to main content

The Incompleteness Factor Method as a Support of Inference in Decision Support Systems

  • Conference paper
Beyond Databases, Architectures, and Structures (BDAS 2014)

Abstract

The authors propose the incompleteness factor (IF) method to improve the effectiveness of browsing in knowledge bases with missing data. The paper explains the whole method, which is based on certainty factors and cluster analysis. The experiments’ results conducted to obtain optimal parameters for the algorithm are presented. The evaluation is made by using recall, precision, F-measure and other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batory, D.: The LEAPS Algorithms (1995), http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf

  2. Bazan, J., Szczuka, M.: RSES and RSESlib - A collection of tools for rough set computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2001)

    Google Scholar 

  3. Forgy, C.L.: On the efficient implementation of production systems. Ph.D. thesis, Carnegie-Mellon University (1979)

    Google Scholar 

  4. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence (1981)

    Google Scholar 

  5. Hanson, E., Hasan, M.S.: Gator: An optimized discrimination network for active database rule condition testing. Tech. rep. (1993)

    Google Scholar 

  6. Ignizio, J.P.: An introduction to Expert Systems. McGraw-Hill (1991)

    Google Scholar 

  7. Jach, T.: Wnioskowanie w systemach z wiedzą niepechhuą. Systemy wspomagania decyzji. Wydawnictwo Uniwersytetu Śląskiego (2011)

    Google Scholar 

  8. Jach, T.: Wybrane aspekty wnioskowania w systemach z wiedzą niepelną. Systemy wspomagania decyzji. Wydawnictwo Uniwersytetu Śląskiego (2012)

    Google Scholar 

  9. Jach, T.: Metody wyznaczania współczynnika niepełności wiedzy w systemach z wiedzą niepełną. Systemy wspomagania decyzji. Wydawnictwo Uniwersytetu Śląskiego (2013)

    Google Scholar 

  10. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley (1990)

    Google Scholar 

  11. Miranker, D.P.: Treat: A better match algorithm for ai production systems. Tech. rep., Department of Computer Sciences, University of Texas at Austin (1987)

    Google Scholar 

  12. Nowak-Brzezińska, A., Jach, T.: Wnioskowanie w systemach z wiedzą niepełną. Studia Informatica, Zeszyty Naukowe Politechniki Śląskiej (2011)

    Google Scholar 

  13. Nowak-Brzezińska, A., Jach, T.: Wybrane aspekty wnioskowania w systemach z wiedzą niepełną. Studia Informatica, Zeszyty Naukowe Politechniki Śląskiej (2012)

    Google Scholar 

  14. Nowak-Brzezińska, A., Jach, T.: Metoda współczynników niepełności wiedzy w systemach wspomagania decyzji. Studia Informatica, Zeszyty Naukowe Politechniki śląskiej (2013)

    Google Scholar 

  15. Salton, G.: Automatic information organization and retreival. McGraw-Hill (1975)

    Google Scholar 

  16. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press (2004)

    Google Scholar 

  17. Swinburne, R.G.: An introduction to confirmation theory. Methuen (1973)

    Google Scholar 

  18. Wakulicz-Deja, A., Nowak-Brzezińska, A., Jach, T.: Inference processes in decision support systems with incomplete knowledge. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 616–625. Springer, Heidelberg (2011)

    Google Scholar 

  19. Nowak-Brzezińska, A., Jach, T., Wakulicz-Deja, A.: Inference processes using incomplete knowledge in decision support systems – chosen aspects. In: Yao, J., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 150–155. Springer, Heidelberg (2012)

    Google Scholar 

  20. Wakulicz-Deja, A., Nowak-Brzezińska, A., Simiński, R.: Sztuczna Inteligencja - systemy ekspertowe. Instytut Informatyki UŚl., wydanie elektroniczne (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Nowak-Brzezińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nowak-Brzezińska, A., Jach, T. (2014). The Incompleteness Factor Method as a Support of Inference in Decision Support Systems. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06932-6_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06931-9

  • Online ISBN: 978-3-319-06932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics