Abstract
A theoretical study is presented to examine the peristaltic pumping with double-diffusive (thermal and concentration diffusion) convection in nano-fluids through a deformable channel. The model is motivated by the need to explore nano-fluid dynamic effects on peristaltic transport in biological vessels, as typified by transport of oxygen and carbon dioxide, food molecules, ions, wastes, hormones, and heat in blood flow. Approximate solutions are obtained under the restrictions of large wavelength and low Reynolds number, for nanoparticle fraction field, concentration field, temperature field, axial velocity, volume flow rate, pressure gradient, stream function, and wave amplitude. The influence of the dominant hydrodynamic parameters (Brownian motion, thermophoresis, Dufour and Soret) and Grashof numbers (thermal, concentration, and nanoparticle) on peristaltic flow patterns are discussed with the help of computational results obtained with the Mathematica software. The classical Newtonian viscous model, presented by Shapiro and others, constitutes a special case of the present model. Applications of the study include novel pharmaco-dynamic pumps, and engineered gastro-intestinal mechanisms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mazumdar J (1999) An introduction to mathematical physiology and biology, 2nd edn. Cambridge University Press, UK
Shyy W, Lian Y, Tang J, Viieru D, Liu H (2008) Aerodynamics of Low Reynolds Number Flyers. Cambridge aerospace series (No. 22). Cambridge University Press, UK
Hou TY, Stredie VG, Wu TY (2007) Mathematical modeling and simulation of aquatic and aerial animal locomotion. J Comput Phys 225:1603–1631
Bar-Cohen Y (2006) Biomimetics-using nature to inspire human innovation. Bioinspir Biomim 1:P1–P12
Schwarz R (2008) Biological modelling and simulation-a survey of practical models, algorithms and numerical methods. MIT, Cambridge
Anderl R, Eigner M, Sendler U, Stark R (2012) Smart engineering … show all 4 hide. Springer, Berlin
Skalak R, Ozkaya N, Skalak TC (1989) Biofluid mechanics. Ann Rev Fluid Mech 21:167–200
Fung YC (1997) Biomechanics: circulation. Springer, New York
Bathe KJ, Zhang H, Ji S (1999) Finite element analysis of fluid flows fully coupled with structural interactions. Computer Structures, 72:1–16
Pedley TJ, Hung TK, Skalak R (1981) Fluid mechanics of cardiovascular flow. In: Reul H, Ghista DN, Rau G (eds) Perspectives in biomechanics. Harvard Academic Publishers, Aachen, 1, pp 113–226
Hung TK, Tsai TMC (2004) Nonlinear pulsatile flows in rigid and distensible arteries. J Mech Med Biol 4:419–434
Pavlov VV (2006) Dolphin skin as a natural anisotropic compliant wall. Bioinspir Biomim 1:31–40
Whittlesey RW, Liska S, Dabiri JO (2010) Fish schooling as a basis for vertical axis wind turbine farm design. Bioinspir Biomim 5:035005
Von Ellenreider KD, Parker K, Soria J (2008) Fluid mechanics of flapping wings. Exp Therm Fluid Sci 32:1578–1589
Bég OA, Parsa AB, Rashidi MM, Sadri SM (2013) Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods-a model for surgical blood flow control. Comput Biol Med 43(9):1142–1153
Gan RZ, Cheng T, Dai C, Yang F, Wood MW (2009) Finite element modeling of sound transmission with perforations of tympanic membrane. J Acoust Soc Am 126:243–253
Tripathi D, Pandey SK, Siddiqui A, Bég OA (2012) Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system. Comput Meth Biomech Biomed Eng. doi:10.1080/10255842.2012.703660
Tripathi D, Bég OA (2012) Magnetohydrodynamic peristaltic flow of a couple stress fluid through coaxial channels containing a porous medium. J Mech Med Biol 12:1250088
Tripathi D, Bég OA, Curiel-Sosa JL (2012) Homotopy semi-numerical simulation of peristaltic flow of generalised oldroyd-b fluids with slip effects. Comput Meth Biomech Biomed Eng. doi:10.1080/10255842.2012.688109
Bég TA, Rashidi MM, Bég OA, Rahimzadeh N (2012) Differential transform semi-numerical analysis of biofluid-particle suspension flow and heat transfer in non-darcian porous media. Comput Meth Biomech Biomed Eng doi:10.1080/10255842.2011.643470
Ronco C (2007) Fluid mechanics and cross filtration in hollow-fiber hemodialyzers, hemodiafiltration. In: Canaud B, Aljama P (eds) Contributions to nephrology. Basel, Switzerland, 158, p 34–49
Andrews JC (2004) Intralabyrinthine fluid dynamics: Meniere disease. Curr Opin Otolaryngol Head Neck Surg 12:408–412
Rashidi MM, Keimanesh M, Bég OA, Hung TK (2010) Magnetohydrodynamic biorheological transport phenomena in a porous medium: a simulation of magnetic blood flow control and filtration. Int J Numer Meth Biomed Eng 27:805–821
Fin L, Grebe R (2003) Three-dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius. Comput Meth Biomech Biomed Eng 6:163–170
Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic microorganisms. Ann Rev Fluid Mech 44:373–400
Bég OA, Rashidi MM, Bég TA, Asadi M (2012) Homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeeze film in a porous medium: a model for magneto-bio-rheological lubrication. J Mech Med Biol 12:1250051.1–1250051.21
Zueco J, Bég OA (2010) Network numerical analysis of hydromagnetic squeeze film flow dynamics between two parallel rotating disks with induced magnetic field effects. Tribol Int 43:532–543
Becker S, Kniesburges S, Müller S, Delgado A, Link G, Kaltenbacher M, Döllinger M (2009) Flow-structure-acoustic interaction in a human voice model. J Acoust Soc Am 125:1351–1361
Bhargava R, Sharma S, Bég OA, Zueco J (2010) Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow. Commun Nonlinear Sci Numer Simul 15:1210–1233
Bég OA, Bhargava R, Rawat S, Takhar HS, Halim MK (2008) Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-darcian porous medium. Meccanica 43:391–410
Dasi LP, Simon HA, Sucosky P, Yoganathan AP (2009) Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol 36:225–237
Norouzi M, Davoodi M, Bég OA, Joneidi AA (2013) Analysis of the effect of normal stress differences on heat transfer in creeping viscoelastic dean flow. Int J Thermal Sci. doi:org/10.1016/j.ijthermalsci. 2013.02.002
Hörschler I, Meinke M, Schroder W (2003) Numerical simulation of the velocity field in a model of the nasal cavity. Comput Fluids 32:39–45
Choi SUS (1995) Enhancing thermal conductivity of fluid with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and application of non-newtonian flows, vol 66. ASME, New York, pp. 99–105
Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Materials Today June:36–44
Hilt JZ, Peppas NA (2005) Microfabricated drug delivery devices. Int J Pharm 306:15–23
Patel GM, Patel GC, Patel RB, Patel JK, Patel M (2006) Nanorobot: a versatile tool in nanomedicine. J Drug Targeting 14:63–67
Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23:171–184
Su D, Ma R, Zhu L (2011) Numerical study of nanofluid infusion in deformable tissues for hyperthermia cancer treatments. J Med Biol Eng 49:1233–1240
Burygin GL (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801
Coco R, Plapied L, Pourcelle V, Jérôme Ch, Brayden DJ, Schneider YJ, Préat V (2013) Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int J Pharm 440:3–12
Paolino D, Fresta M, Sinha P, Ferrari M (2006) Drug delivery systems. . In: Webster JG (ed) Encyclopedia of medical devices and instrumentation 2nd edn. Wiley, New York
Bég OA (2013) Peristaltic pumps- FSI modelling. Technical report, Gort Engovation, BIO-FSI/02-13., February, pp 142
Bayliss WM, Starling EH (1899) The movements and innervation of the small Intestine. J Physiol (London) 24:99–143
Fung YC (1971) Peristaltic pumping: a bioengineering model. In Proceedings of Workshop Hydrodynamics. Upper UrinaryTract, Natl Acad Sci, Washington DC
Latham TW (1966) Fluid motion in peristaltic pump. MS thesis. MIT, USA
Shapiro AH, Jafferin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 37:699–825
Fung YC, Yih CS (1968) Peristaltic transport. ASME J Appl Mech 35:669–675
Burns JC, Parkes T (1967) Peristaltic motion. J Fluid Mech 29:731–743
Barton C, Raynor S (1968) Peristaltic flow in tubes. Bull Math Biophys 30:663–680
Chaw TS (1970) Peristaltic transport in a circular cylindrical pipe. ASME J Appl Mech 37:901–905
Jafferin MY (1973) Inertia and streamline curvature effects on peristaltic pumping. Int J Eng Sci 11:681–699
Bohme G, Friedrich R (1983) Peristaltic flow of viscoelastic liquids. J Fluid Mech 128:109–122
Tsiklauri D, Beresnev I (2001) Non-Newtonian effects in the peristaltic flow of a Maxwell fluid. Phys Rev E 64:036303-1–036303-5
Tripathi D (2011) Peristaltic flow of couple-stress conducting fluids through a porous channel: applications to blood flow in the micro-circulatory system. J Biol Syst 19:461–477
Tripathi D (2011) Peristaltic transport of fractional maxwell fluids in uniform tubes: application of an endoscope. Comput Math Appl 62:1116–1126
Tripathi D (2011) Numerical and analytical simulation of peristaltic flows of generalized Oldroyd-B Fluids. Int J Numer Meth Fluids 67:1932–1943
Hayat T, Mahomed FM, Asghar S (2005) Peristaltic flow of a magnetohydrodynamic Johnson-Segalman fluid. Nonlinear Dyn 40:375–385
Tripathi D, Pandey SK, Bég. OA (2013) Mathematical modelling of heat transfer effects on swallowing dynamics of viscoelastic food bolus through the human oesophagus. Int J Therm Sci 70:41–53
Bég OA, Keimanesh M, Rashidi MM, Davoodi M (2013) Multi-Step dtm simulation of magneto-peristaltic flow of a conducting Williamson viscoelastic fluid. Int J Appl Math Mech 9:1–24
Bhargava R, Sharma S, Takhar HS, Bég TA, Bég OA, Hung TK (2006) Peristaltic pumping of micropolar fluid in porous channel—model for stenosed arteries. J Biomech 39:S649–S669
Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018
Rashidi MM, Bég OA, Mehr NF, Hosseini A, Gorla RSR (2012) Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylinder. Theor Appl Mech 39:365–390
Bég OA, Gorla RSR, Prasad VR, Vasu B, Prashad RD (2011) Computational study of mixed thermal convection nanofluid flow in a porous medium. 12th UK National Heat Transfer Conference, Chemical Engineering Department, University of Leeds, West Yorkshire, Session 8, ID 0004
Rana P, Bhargava R, Bég OA (2013) Finite element modeling of conjugate mixed convection flow of al2o3-water nanofluid from an inclined slender hollow cylinder. Phys Scripta 87:15
Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250
Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. ASME J Heat Transf 125:151–155
Pak BC, Cho Y (2003) Hydrodynamics and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170
Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Thermal transport in nanofluids. Ann Rev Mater Res 34:219–146
Wang XQ, Majumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19
Trisaksri V, Wongwises SP (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sust Energ Rev 11:512–523
Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7:141–150
Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew Sust Energ Rev 15:1646–1668
Kuznetsov AV, Nield DA (2010) Natural convection boundary layer flow of nanofluids past a vertical plate. Int J Therm Sci 49:243–247
Kuznetsov AV, Nield DA (2011) Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 50:712–717
Nield DA, Kuznetsov AV (2011) The onset of double-diffusive convection in a nanofluid layer. Int J Heat Fluid Flow 32:771–776
Nield DA, Kuznetsov AV (2010) The onset of convection in a horizontal nanofluid layer of finite depth. Eur J Mech B/Fluids 29:217–223
Nield DA, Kuznetsov AV (2009) Thermal instability in a porous medium layer saturated by a nanofluid. Int J Heat Mass Transf 52:5796–5801
Nield DA, Kuznetsov AV (2010) The effect of local thermal non-equilibrium on the onset of convection in a nanofluid. ASME J Heat Transf 132:052405-1-7
Kolade B, Goodson KE, Eaton JK (2009) Convective performance of nanofluids in a laminar thermally-developing tube flow. ASME J Heat Transf 131:052402-1-8
Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci 49:1663–1668
Rashidi MM, Bég OA, Asadi M, Rastegari MT (2012) DTM- Padé modeling of natural convective boundary layer flow of a nanofluid past a vertical surface. Int J Therm Environ Eng 4:13–24
Bég OA, Bég TA, Rashidi MM, Asadi M (2012) Homotopy semi-numerical modelling of nanofluid convection boundary layers from an isothermal spherical body in a permeable regime. Int J Micro Nano Therm Fluid Transp Phenom 3:237–266
Rashidi MM, Bég OA, Rostami B, Osmond L (2013) DTM- Padé simulation of stagnation-point nanofluid mechanics. Int J Appl Math Mech 9:1–29
Bég OA, Ferdows M, Khan Md S (2013) Numerical study of transient magnetohydrodynamic radiative mixed convection nanofluid flow from a stretching permeable surface. Proceedings of IMECHE–Part E: J Proc Mech Eng
Bég OA, Bég TA, Rashidi MM, Asadi M (2013) DTM- Padé semi-numerical simulation of nanofluid transport in porous media. Int J Appl Math Mech 9:80–107
Bég OA, Prasad VR, Vasu B (2013) Numerical study of mixed bio-convection in porous media saturated with nanofluid containing oxytactic micro-organisms. J Mech Med Biol 13:1350067
Uddin MJ, Yusoff NHM, Bég OA, Ismail AI (2013) Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation. Physica Scripta 87:14
Akbar NS, Nadeem S (2011) Endoscopic effects on peristaltic flow of a nanofluid. Commun Theor Phys 56:761
Akbar NS, Nadeem S, Hayat T, Hendi AA (2012) Peristaltic flow of a nanofluid with slip effects. Meccanica 47:1283–1294
Akbar NS, Nadeem S, Hayat T, Hendi AA (2012) Peristaltic flow of a nanofluid in a non-uniform tube. Heat Mass Transf 48:451–459
Mustafa M, Hina S, Hayat T, Alsaedi A (2012) Influence of wall properties on the peristaltic flow of a nanofluid: analytic and numerical solutions. Int J Heat Mass Transf 55:4871–4877
Akbar NS, Nadeem S (2012) Peristaltic flow of a Phan-Thien-tanner nanofluid in a diverging tube. Heat Transf-Asian Res 41:10–22
Mustafa M, Hina S, Hayat T, Alseadi A (2013) Slip effects on the peristaltic motion of nanofluid in a channel with wall properties. ASME J Heat Transf 135:041701-1-7
Kleinstreuer C, Li J (2010) Chapter 5 Microfluidic devices in nanotechnology. Microfluidic devices for drug delivery. Wiley, New York
Gebhart B (1988) Buoyancy-induced flows and transport. Hemisphere, Washington
Bég OA, Bhargava R, Rawat S, Kahya E (2008) Numerical study of micropolar convective heat and mass transfer in a non-Darcy porous regime with Soret and Dufour diffusion. Emer J Eng Res 13:51–66
Bég OA, Prasad VR, Vasu B, Reddy NB, Li Q, Bhargava R (2011) Free convection heat and mass transfer from an isothermal sphere to a micropolar regime with Soret/Dufour effects. Int J Heat Mass Transf 54:9–18
Prasad VR, Vasu B, Bég OA (2013) Thermo-diffusion and diffusion-thermo effects on free convection flow past a horizontal circular cylinder in a non-Darcy porous medium. J Porous Media 16:315–334
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Tripathi, D., Bég, O. (2014). Mathematical Modelling of Peristaltic Pumping of Nano-Fluids. In: Basu, S., Kumar, N. (eds) Modelling and Simulation of Diffusive Processes. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-05657-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-05657-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05656-2
Online ISBN: 978-3-319-05657-9
eBook Packages: Computer ScienceComputer Science (R0)