A Comparative Study of Membership Functions for an Interval Type-2 Fuzzy System used to Dynamic Parameter Adaptation in Particle Swarm Optimization | SpringerLink
Skip to main content

A Comparative Study of Membership Functions for an Interval Type-2 Fuzzy System used to Dynamic Parameter Adaptation in Particle Swarm Optimization

  • Chapter
  • First Online:
Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 547))

Abstract

This chapter present an analysis of the effects in quality results that brings the different types of membership functions in an interval type-2 fuzzy system used to adapt some parameters of Particle Swarm Optimization (PSO). Benchmark mathematical functions are used to test the methods and a comparison is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Engelbrecht A.P.: Fundamentals of Computational Swarm Intelligence. University of Pretoria, South Africa (2005)

    Google Scholar 

  2. Haupt, R., Haupt, S.: Practical Genetic Algorithms, 2nd edn. A Wiley-Interscience publication, New York (2004)

    Google Scholar 

  3. Hongbo, L., Ajith, A.: A fuzzy adaptive turbulent particle swarm optimization. Int. J. Innovative Comput. Appl. 1(1), 39–47 (2007)

    Article  Google Scholar 

  4. Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, IV. Piscataway, NJ: IEEE Service Center, pp. 1942–1948 (1995)

    Google Scholar 

  6. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  7. Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Article  Google Scholar 

  8. Marcin, M., Smutnicki, C.: Test functions for optimization needs (2005)

    Google Scholar 

  9. Olivas, F., Castillo, O.: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Elsevier, Expert systems with applications, pp. 3196–3206 (2012)

    Google Scholar 

  10. Olivas, F., Valdez, F., Castillo, O.: Particle swarm optimization with dynamic parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions. In: 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 36–40 (2013)

    Google Scholar 

  11. Shi, Y., Eberhart, R.: Fuzzy adaptive particle swarm optimization. In: Evolutionary Computation, pp. 101–106 (2001)

    Google Scholar 

  12. Wang, B., Liang, G., ChanLin, W., Yunlong, D.: A new kind of fuzzy particle swarm optimization FUZZY_PSO algorithm. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics. ISSCAA 2006, pp. 309–311 (2006)

    Google Scholar 

  13. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zadeh, L.: Fuzzy logic. IEEE Comput. 8, 83–92 (1965)

    Google Scholar 

  15. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fevrier Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olivas, F., Valdez, F., Castillo, O. (2014). A Comparative Study of Membership Functions for an Interval Type-2 Fuzzy System used to Dynamic Parameter Adaptation in Particle Swarm Optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics