Optimization of Benchmark Mathematical Functions Using the Firefly Algorithm | SpringerLink
Skip to main content

Optimization of Benchmark Mathematical Functions Using the Firefly Algorithm

  • Chapter
  • First Online:
Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 547))

Abstract

Nature-inspired algorithms are more relevant today, such as PSO and ACO, which have been used in various types of problems such as the optimization of neural networks, fuzzy systems, control, and others showing good results. There are other methods that have been proposed more recently, the firefly algorithm is one of them, this paper will explain the algorithm and describe how it behaves. In this chapter the firefly algorithm was applied in optimizing benchmark functions and comparing the results of the same functions with genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Y., Passino, K.M.: Swarm intelligence: a survey. In: International Conference of Swarm Intelligence (2005)

    Google Scholar 

  2. Li, L.X., Shao, Z.J., Qian, J.X.: An optimizing method based on autonomous animals: fish swarm algorithm. Syst. Eng. Theory Pract (2002)

    Google Scholar 

  3. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)

    Google Scholar 

  4. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms Foundations and Applications, Stochastic Algorithms: foundations and Applications (SAGA’09). Lecture Notes in Computing Sciences, vol. 5792, pp. 169–178. Springer, Berlin (2009)

    Google Scholar 

  5. Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. IEEE Congr. Evol. Comput. 1068–1074 (2013)

    Google Scholar 

  6. Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2114–2119. (2009)

    Google Scholar 

  7. Valdez, F., Melin, P., Castillo, O.: Parallel particle swarm optimization with parameters adaptation using fuzzy logic. In: MICAI, vol. 2, pp. 374–385 (2012)

    Google Scholar 

  8. Holland, H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  9. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 942–1948. Piscataway, NJ (1995)

    Google Scholar 

  10. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  11. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1997), 53–66 (1997)

    Article  Google Scholar 

  12. Yang, X.S.: Firefly algorithm stochastic test functions and design optimization. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  13. Yang, X.-S.: Firefly algorithm, Lévy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems, vol. XXVI, pp. 209–218. Springer, London (2010)

    Google Scholar 

  14. Valdez, F., Melin, P.: Comparative study of particle swarm optimization and genetic algorithms for mathematical complex functions. J. Autom. Mob. Rob. Intell. Syst. JAMRIS (2008)

    Google Scholar 

  15. Melendez, A., Castillo, O.: Evolutionary optimization of the fuzzy integrator in a navigation system for a mobile robot. Recent Adv. Hybrid Intell. Syst. 21–31 (2013)

    Google Scholar 

  16. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning, reading, mass. Addison Wesley, Boston (1989)

    Google Scholar 

  17. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  18. Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl. Soft Comput. 11(2), 2625–2632 (2011)

    Article  Google Scholar 

  19. Valdez, F., Melin, P., Castillo, O.: Bio-inspired optimization methods on graphic processing unit for minimization of complex mathematical functions. Recent Adv. Hybrid Intell. Syst. 313–322 (2013)

    Google Scholar 

  20. Kennedy, J., Eberhart, J.R., Shi, Y.: Swarm intelligence. Academic Press, Massachusetts (2001)

    Google Scholar 

  21. Rodriguez, K.V.: Multiobjective evolutionary algorithms in non-linear system identification, in automatic control and systems engineering, p. 185. The University of Sheffield, Sheffield (1999)

    Google Scholar 

  22. Zadeh, L.A.: Foreword. In: Cordon, O., Herrera, F., Hoffman, F., Magdalena, y L. (eds.) Genetic Fuzzy Systems: evolutionary Tuning And Learning Of Fuzzy Knowledge Bases. (2001)

    Google Scholar 

  23. Astudillo, L., Melin, P., Castillo, O.: Optimization of a fuzzy tracking controller for an autonomous mobile robot under perturbed torques by means of a chemical optimization paradigm. Recent Adv Hybrid Intell. Syst. 3–20 (2013)

    Google Scholar 

  24. Cervantes, L., Castillo, O.: Genetic optimization of membership functions in modular fuzzy controllers for complex problems. Recent Adv. Hybrid Intell. Syst. 51–62 (2013)

    Google Scholar 

  25. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Milano (1992)

    Google Scholar 

  26. Erol, O.K., Eksin, I.: A new optimization method: big bang-big crunch. Adv. Eng. Softw. 37, 106–111 (2006)

    Article  Google Scholar 

  27. Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., García, J.M.: Valdez: optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 40(8), 3196–3206 (2013)

    Article  Google Scholar 

  28. Baeck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. Taylor & Francis, UK (1997)

    Google Scholar 

  29. Yang, X.S.: Engineering Optimization: an Introduction with Metaheuristic Applications. Wiley, New Jersey (2010)

    Book  Google Scholar 

  30. Maldonado, Y., Castillo, O., Melin, P.: Optimization of membership functions for an incremental fuzzy PD control based on genetic algorithms. Soft Comput. Intell. Control Mob. Rob. 195–211 (2011)

    Google Scholar 

  31. Montiel, O., Sepulveda, R., Melin, P., Castillo, O., Porta, M., Meza, I.: Performance of a simple tuned fuzzy controller and a PID controller on a DC motor. FOCI. 531–537 (2007)

    Google Scholar 

  32. Castillo, O., Martinez, A.I., Martinez, A.C.: Evolutionary computing for topology optimization of type-2 fuzzy systems. Adv. Soft Comput. 41, 63–75 (2007)

    Article  Google Scholar 

  33. Castillo, O., Huesca, G., Valdez, F.: Evolutionary computing for topology optimization of type-2 fuzzy controllers. Stud. Fuzziness Soft Comput. 208, 163–178 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Solano-Aragón, C., Castillo, O. (2014). Optimization of Benchmark Mathematical Functions Using the Firefly Algorithm. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics