Abstract
Nature-inspired algorithms are more relevant today, such as PSO and ACO, which have been used in various types of problems such as the optimization of neural networks, fuzzy systems, control, and others showing good results. There are other methods that have been proposed more recently, the firefly algorithm is one of them, this paper will explain the algorithm and describe how it behaves. In this chapter the firefly algorithm was applied in optimizing benchmark functions and comparing the results of the same functions with genetic algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, Y., Passino, K.M.: Swarm intelligence: a survey. In: International Conference of Swarm Intelligence (2005)
Li, L.X., Shao, Z.J., Qian, J.X.: An optimizing method based on autonomous animals: fish swarm algorithm. Syst. Eng. Theory Pract (2002)
Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms Foundations and Applications, Stochastic Algorithms: foundations and Applications (SAGA’09). Lecture Notes in Computing Sciences, vol. 5792, pp. 169–178. Springer, Berlin (2009)
Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. IEEE Congr. Evol. Comput. 1068–1074 (2013)
Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2114–2119. (2009)
Valdez, F., Melin, P., Castillo, O.: Parallel particle swarm optimization with parameters adaptation using fuzzy logic. In: MICAI, vol. 2, pp. 374–385 (2012)
Holland, H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 942–1948. Piscataway, NJ (1995)
Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1997), 53–66 (1997)
Yang, X.S.: Firefly algorithm stochastic test functions and design optimization. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)
Yang, X.-S.: Firefly algorithm, Lévy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems, vol. XXVI, pp. 209–218. Springer, London (2010)
Valdez, F., Melin, P.: Comparative study of particle swarm optimization and genetic algorithms for mathematical complex functions. J. Autom. Mob. Rob. Intell. Syst. JAMRIS (2008)
Melendez, A., Castillo, O.: Evolutionary optimization of the fuzzy integrator in a navigation system for a mobile robot. Recent Adv. Hybrid Intell. Syst. 21–31 (2013)
Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning, reading, mass. Addison Wesley, Boston (1989)
Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)
Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl. Soft Comput. 11(2), 2625–2632 (2011)
Valdez, F., Melin, P., Castillo, O.: Bio-inspired optimization methods on graphic processing unit for minimization of complex mathematical functions. Recent Adv. Hybrid Intell. Syst. 313–322 (2013)
Kennedy, J., Eberhart, J.R., Shi, Y.: Swarm intelligence. Academic Press, Massachusetts (2001)
Rodriguez, K.V.: Multiobjective evolutionary algorithms in non-linear system identification, in automatic control and systems engineering, p. 185. The University of Sheffield, Sheffield (1999)
Zadeh, L.A.: Foreword. In: Cordon, O., Herrera, F., Hoffman, F., Magdalena, y L. (eds.) Genetic Fuzzy Systems: evolutionary Tuning And Learning Of Fuzzy Knowledge Bases. (2001)
Astudillo, L., Melin, P., Castillo, O.: Optimization of a fuzzy tracking controller for an autonomous mobile robot under perturbed torques by means of a chemical optimization paradigm. Recent Adv Hybrid Intell. Syst. 3–20 (2013)
Cervantes, L., Castillo, O.: Genetic optimization of membership functions in modular fuzzy controllers for complex problems. Recent Adv. Hybrid Intell. Syst. 51–62 (2013)
Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Milano (1992)
Erol, O.K., Eksin, I.: A new optimization method: big bang-big crunch. Adv. Eng. Softw. 37, 106–111 (2006)
Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., García, J.M.: Valdez: optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 40(8), 3196–3206 (2013)
Baeck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. Taylor & Francis, UK (1997)
Yang, X.S.: Engineering Optimization: an Introduction with Metaheuristic Applications. Wiley, New Jersey (2010)
Maldonado, Y., Castillo, O., Melin, P.: Optimization of membership functions for an incremental fuzzy PD control based on genetic algorithms. Soft Comput. Intell. Control Mob. Rob. 195–211 (2011)
Montiel, O., Sepulveda, R., Melin, P., Castillo, O., Porta, M., Meza, I.: Performance of a simple tuned fuzzy controller and a PID controller on a DC motor. FOCI. 531–537 (2007)
Castillo, O., Martinez, A.I., Martinez, A.C.: Evolutionary computing for topology optimization of type-2 fuzzy systems. Adv. Soft Comput. 41, 63–75 (2007)
Castillo, O., Huesca, G., Valdez, F.: Evolutionary computing for topology optimization of type-2 fuzzy controllers. Stud. Fuzziness Soft Comput. 208, 163–178 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Solano-Aragón, C., Castillo, O. (2014). Optimization of Benchmark Mathematical Functions Using the Firefly Algorithm. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-05170-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05169-7
Online ISBN: 978-3-319-05170-3
eBook Packages: EngineeringEngineering (R0)