Hintikka-Style Semantic Games for Fuzzy Logics | SpringerLink
Skip to main content

Hintikka-Style Semantic Games for Fuzzy Logics

  • Conference paper
Foundations of Information and Knowledge Systems (FoIKS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8367))

Abstract

Various types of semantics games for deductive fuzzy logics, most prominently for Łukasiewicz logic, have been proposed in the literature. These games deviate from Hintikka’s original game for evaluating classical first-order formulas by either introducing an explicit reference to a truth value from the unit interval at each game state (as in [4]) or by generalizing to multisets of formulas to be considered at any state (as, e.g., in [12,9,7,10]). We explore to which extent Hintikka’s game theoretical semantics for classical logic can be generalized to a many-valued setting without sacrificing the simple structure of Hintikka’s original game. We show that rules that instantiate a certain scheme abstracted from Hintikka’s game do not lead to logics beyond the rather inexpressive, but widely applied Kleene-Zadeh logic, also known as ‘weak Łukasiewicz logic’ or even simply as ‘fuzzy logic’ [27]. To obtain stronger logics we consider propositional as well as quantifier rules that allow for random choices. We show how not only various extensions of Kleene-Zadeh logic, but also proper extensions Łukasiewicz logic arise in this manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguzzoli, S., Gerla, B., Marra, V.: Algebras of fuzzy sets in logics based on continuous triangular norms. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 875–886. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bennett, A.D.C., Paris, J.B., Vencovska, A.: A new criterion for comparing fuzzy logics for uncertain reasoning. Journal of Logic, Language and Information 9(1), 31–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic. College Publications (2011)

    Google Scholar 

  4. Cintula, P., Majer, O.: Towards evaluation games for fuzzy logics. In: Majer, O., Pietarinen, A.-V., Tulenheimo, T. (eds.) Games: Unifying Logic, Language, and Philosophy, pp. 117–138. Springer (2009)

    Google Scholar 

  5. Fermüller, C.G.: Revisiting Giles’s game. In: Majer, O., Pietarinen, A.-V., Tulenheimo, T. (eds.) Games: Unifying Logic, Language, and Philosophy, Logic, Epistemology, and the Unity of Science, pp. 209–227. Springer (2009)

    Google Scholar 

  6. Fermüller, C.G.: On matrices, Nmatrices and games. Journal of Logic and Computation (2013) (page to appear)

    Google Scholar 

  7. Fermüller, C.G., Metcalfe, G.: Giles’s game and the proof theory of Łukasiewicz logic. Studia Logica 92(1), 27–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fermüller, C.G., Roschger, C.: Randomized game semantics for semi-fuzzy quantifiers. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part IV. CCIS, vol. 300, pp. 632–641. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Fermüller, C.G., Roschger, C.: From games to truth functions: A generalization of Giles’s game. Studia Logica (2013) (to appear)

    Google Scholar 

  10. Fermüller, C.G., Roschger, C.: Randomized game semantics for semi-fuzzy quantifiers. Logic Journal of the IGPL (to appear)

    Google Scholar 

  11. Gerla, B.: Rational Łukasiewicz logic and DMV-algebras. Neural Networks World 11, 579–584 (2001)

    Google Scholar 

  12. Giles, R.: A non-classical logic for physics. Studia Logica 33(4), 397–415 (1974)

    Article  MathSciNet  Google Scholar 

  13. Giles, R.: A non-classical logic for physics. In: Wojcicki, R., Malinkowski, G. (eds.) Selected Papers on Łukasiewicz Sentential Calculi, pp. 13–51. Polish Academy of Sciences (1977)

    Google Scholar 

  14. Giles, R.: Semantics for fuzzy reasoning. International Journal of Man-Machine Studies 17(4), 401–415 (1982)

    Article  MATH  Google Scholar 

  15. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers (2001)

    Google Scholar 

  16. Hájek, P.: Why fuzzy logic? In: Jacquette, D. (ed.) Blackwell Companion to Philosophical Logic, pp. 596–606. Wiley (2002)

    Google Scholar 

  17. Hájek, P.: On witnessed models in fuzzy logic. Mathematical Logic Quarterly 53(1), 66–77 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hintikka, J.: Language-games for quantifiers. In: Rescher, N. (ed.) Studies in Logical Theory, pp. 46–72. Blackwell, Oxford (1968); Reprinted in [19]

    Google Scholar 

  19. Hintikka, J.: Logic, language-games and information: Kantian themes in the philosophy of logic. Clarendon Press Oxford (1973)

    Google Scholar 

  20. Hintikka, J., Sandu, G.: Game-theoretical semantics. In: Handbook of Logic and Language. Elsevier (2010)

    Google Scholar 

  21. Hisdal, E.: Are grades of membership probabilities? Fuzzy Sets and Systems 25(3), 325–348 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lawry, J.: A voting mechanism for fuzzy logic. International Journal of Approximate Reasoning 19(3-4), 315–333 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lorenzen, P.: Logik und Agon. In: Atti Congr. Internaz. di Filosofia, Venezia, Settembre 12-18, vol. IV, Sansoni (1960)

    Google Scholar 

  24. Lorenzen, P.: Dialogspiele als semantische Grundlage von Logikkalkülen. Archiv Für Mathemathische Logik und Grundlagenforschung 11, 32–55, 73–100 (1968)

    Google Scholar 

  25. Mann, A.L., Sandu, G., Sevenster, M.: Independence-friendly logic: A game-theoretic approach. Cambridge University Press (2011)

    Google Scholar 

  26. McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16(1), 1–13 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nguyêñ, H.T., Walker, E.A.: A first course in fuzzy logic. CRC Press (2006)

    Google Scholar 

  28. Paris, J.B.: A semantics for fuzzy logic. Soft Computing 1(3), 143–147 (1997)

    Article  Google Scholar 

  29. Paris, J.B.: Semantics for fuzzy logic supporting truth functionality. In: Novák, V., Perfilieva, I. (eds.) Discovering the World with Fuzzy Logic, pp. 82–104. Physica-Verlag (2000)

    Google Scholar 

  30. Peters, S., Westerståhl, D.: Quantifiers in language and logic. Oxford University Press, USA (2006)

    Google Scholar 

  31. Scarpellini, B.: Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz. Journal of Symbolic Logic 27(2), 159–170 (1962)

    Article  MathSciNet  Google Scholar 

  32. Sevenster, M., Sandu, G.: Equilibrium semantics of languages of imperfect information. Annals of Pure and Applied Logic 161(5), 618–631 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wen, X., Ju, S.: Semantic games with chance moves revisited: from IF logic to partial logic. Synthese 190(9), 1605–1620 (2013)

    Article  MathSciNet  Google Scholar 

  34. Zadeh, L.A.: Fuzzy logic. IEEE: Computer 21(4), 83–93 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fermüller, C.G. (2014). Hintikka-Style Semantic Games for Fuzzy Logics. In: Beierle, C., Meghini, C. (eds) Foundations of Information and Knowledge Systems. FoIKS 2014. Lecture Notes in Computer Science, vol 8367. Springer, Cham. https://doi.org/10.1007/978-3-319-04939-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04939-7_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04938-0

  • Online ISBN: 978-3-319-04939-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics