Networks of Polarized Evolutionary Processors Are Computationally Complete | SpringerLink
Skip to main content

Networks of Polarized Evolutionary Processors Are Computationally Complete

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

In this paper, we consider the computational power of a new variant of networks of evolutionary processors which seems to be more suitable for a software and hardware implementation. Each processor as well as the data navigating throughout the network are now considered to be polarized. While the polarization of every processor is predefined, the data polarization is dynamically computed by means of a valuation mapping. Consequently, the protocol of communication is naturally defined by means of this polarization. We show that tag systems can be simulated by these networks with a constant number of nodes, while Turing machines can be simulated, in a time-efficient way, by these networks with a number of nodes depending linearly on the tape alphabet of the Turing machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alarcón, P., Arroyo, F., Mitrana, V.: Networks of polarized evolutionary processors as problem solvers. In: Advances in Knowledge-Based and Intelligent Information and Engineering Systems. Frontiers in Artificial Intelligence and Applications, pp. 807–815. IOS Press (2012)

    Google Scholar 

  2. Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Networks of evolutionary processors. Acta Inf. 39, 517–529 (2003)

    MATH  Google Scholar 

  3. Díaz, M.A., de Mingo, L.F., Blas, N.G., Castellanos, J.: Implementation of massive parallel networks of evolutionary processors (MPNEP): 3-colorability problem. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). SCI, vol. 129, pp. 399–408. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Diaz, M.A., de Mingo, L.F., Gómez, N.: Networks of evolutionary processors: Java Implementation of a threaded processor. International Journal of Information Theories & Applications 15, 37–43 (2008)

    Google Scholar 

  5. Drăgoi, C., Manea, F., Mitrana, V.: Accepting networks of evolutionary processors with filtered connections. J. UCS 13, 1598–1614 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 533–546 (1965)

    Article  MathSciNet  Google Scholar 

  7. Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1979)

    Google Scholar 

  8. Loos, R., Manea, F., Mitrana, V.: Small universal accepting hybrid networks of evolutionary processors. Acta Inf. 47, 133–146 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Manea, F., Martín-Vide, C., Mitrana, V.: On the size complexity of universal accepting hybrid networks of evolutionary processors. Mathematical Structures in Computer Science 17, 753–771 (2007)

    Article  MATH  Google Scholar 

  10. Manea, F., Margenstern, M., Mitrana, V., Pérez-Jiménez, M.J.: A new characterization of NP, P, and PSPACE with accepting hybrid networks of evolutionary processors. Theory Comput. Syst. 46, 174–192 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Manea, F., Martín-Vide, C., Mitrana, V.: Accepting networks of evolutionary word and picture processors: A survey. In: Scientific Applications of Language Methods, Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguistics and Language Theory, vol. 2, pp. 523–560. World Scientific (2010)

    Google Scholar 

  12. Margenstern, M., Mitrana, V., Pérez-Jímenez, M.J.: Accepting Hybrid Networks of Evolutionary Processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A new class of symbolic abstract neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Martín-Vide, C., Mitrana, V., Pérez-Jiménez, M.J., Sancho-Caparrini, F.: Hybrid networks of evolutionary processors. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 401–412. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Minsky, M.L.: Size and structure of universal Turing machines using tag systems. In: Recursive Function Theory, Symp. in Pure Mathematics, vol. 5, pp. 229–238 (1962)

    Google Scholar 

  16. Navarrete, C.B., Echeanda, M., Anguiano, E., Ortega, A., Rojas, J.M.: Parallel simulation of NEPs on clusters. In: Proc. IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - WI-IAT, pp. 171–174. IEEE Computer Society (2011)

    Google Scholar 

  17. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)

    Google Scholar 

  18. Post, E.L.: Formal reductions of the general combinatorial decision problem. Amer. J. Math. 65, 197–215 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  19. Păun, G.: Membrane computing. An introduction. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  20. Rogozhin, Y.: Small universal Turing machines. Theoret. Comput. Sci. 168, 215–240 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I-III. Springer, Berlin (1997)

    Google Scholar 

  22. Sankoff, D., et al.: Gene order comparisons for phylogenetic inference:evolution of the mitochondrial genome. Proceedings of the National Academy of Sciences of the United States of America 89, 6575–6579 (1992)

    Article  Google Scholar 

  23. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal Turing machines. In: 47th Annual IEEE Symposium on Foundations of Computer Science FOCS 2006, pp. 439–448 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Arroyo, F., Gómez Canaval, S., Mitrana, V., Popescu, Ş. (2014). Networks of Polarized Evolutionary Processors Are Computationally Complete. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics