Abstract
Spatial information plays an essential role in accurate matching of local features in applications, e.g., image retrieval. Despite of previous work, it remains a challenging problem to extract appropriate spatial information. We propose an image retrieval framework based on visual phrase. By encoding the spatial information into the similarity measure of visual phrases, our approach is able to capture accurate spatial information between visual words. Furthermore, the image-specific visual phrase selection process helps to reduce large number of redundant visual phrases. We have conducted experiments on two datasets: UKbench and TRECVID, which shows that our ideas significantly improve the performance in image retrieval application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: CVPR 2003, pp. 1470–1477. IEEE (October 2003)
Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR 2006, vol. 2, pp. 2161–2168. IEEE (2006)
Zheng, Q.F., Gao, W.: Constructing visual phrases for effective and efficient object-based image retrieval. In: ACM TOMCCAP 2008, vol. 5(1) (2008)
Zheng, Y.T., Zhao, M., Neo, S.Y., Chua, T.S., Tian, Q.: Visual synset: towards a higher-level visual representation. In: CVPR 2008, pp. 1–8. IEEE (June 2008)
Yuan, J., Wu, Y., Yang, M.: Discovery of collocation patterns: from visual words to visual phrases. In: CVPR 2007, pp. 1–8. IEEE (June 2007)
Hu, Y., Cheng, X., Chia, L.T., Xie, X., Rajan, D., Tan, A.H.: Coherent phrase model for efficient image near-duplicate retrieval. IEEE Trans. Multimedia 11(8), 1434–1445 (2009)
Zhang, S., Huang, Q., Hua, G., Jiang, S., Gao, W., Tian, Q.: Building contextual visual vocabulary for large-scale image applications. In: ACM Multimedia, pp. 501–510 (2010)
Liu, D., Hua, G., Viola, P., Chen, T.: Integrated feature selection and higher-order spatial feature extraction for object categorization. In: CVPR 2008, pp. 1–8. IEEE (June 2008)
Zhang, S., Tian, Q., Hua, G., Huang, Q., Li, S.: Descriptive visual words and visual phrases for image applications. In: ACM Multimedia, pp. 75–84. ACM (October 2009)
Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. IJCV 87(3), 316–336 (2010)
Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry-preserving visual phrases. In: CVPR 2011, pp. 809–816. IEEE (June 2011)
Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web image search. In: CVPR 2009, pp. 25–32. IEEE (June 2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, J., Feng, B., Xu, B. (2014). Spatial Similarity Measure of Visual Phrases for Image Retrieval. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8326. Springer, Cham. https://doi.org/10.1007/978-3-319-04117-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-04117-9_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04116-2
Online ISBN: 978-3-319-04117-9
eBook Packages: Computer ScienceComputer Science (R0)