Multi-view Action Synchronization in Complex Background | SpringerLink
Skip to main content

Multi-view Action Synchronization in Complex Background

  • Conference paper
MultiMedia Modeling (MMM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8326))

Included in the following conference series:

Abstract

This paper addresses temporal synchronization of human actions under multiple view situation. Many researchers focused on frame by frame alignment for sync these multi-view videos, and expolited features such as interesting point trajectory or 3d human motion feature for event detecting individual. However, since background are complex and dynamic in real world, traditional image-based features are not fit for video representation. We explore the approach by using robust spatio-temporal features and self-similarity matrices to represent actions across views. Multiple sequences can be aligned their temporal patch(Sliding window) using the Dynamic Time Warping algorithm hierarchically and measured by meta-action classifiers. Two datasets including the Pump and the Olympic dataset are used as test cases. The methods are showed the effectiveness in experiment and suited general video event dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. Computer Vision and Image Understanding 115(2), 224–241 (2011)

    Article  Google Scholar 

  2. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)

    Article  Google Scholar 

  3. Dexter, E., Prez, P., Laptev, I.: Multi-view Synchronization of Human Actions and Dynamic Scenes. In: Proc. of BMVC 2009, pp. 1–11 (2009)

    Google Scholar 

  4. Zhou, F., Frade, F.: Generalized Time Warping for Multi-modal Alignment of Human Motion. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (June 2012)

    Google Scholar 

  5. Zhou, F., Frade, F., Hodgins, J.: Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 35(3), 582–596 (2013)

    Article  Google Scholar 

  6. Hsu, E., Pulli, K., Popovic, J.: Style translation for human motion. ACM Trans. Graph. 24(3), 1082–1089 (2005)

    Article  Google Scholar 

  7. Farhadi, A., Tabrizi, M., Endres, I., Forsyth, D.: A latent model of discriminative aspect. In: International Conference on Computer Vision - ICCV, pp. 948–955 (2009)

    Google Scholar 

  8. Wedge, D., Huynh, D., Kovesi, P.: Using space-time interest points for video sequence synchronization. In: Proc. IAPR Conf. on Machine Vision Applications, pp. 190–194 (2007)

    Google Scholar 

  9. Gao, Z., Detyniecki, M., Chen, M.-Y., Hauptmann, A.G., Wactlar, H.D., Cai, A.: The Application of Spatio-temporal Feature and Multi-Sensor in Home Medical Devices. International Journal of Digital Content Technology and its Applications (IJDCTA) 4(6), 69–78 (2010)

    Google Scholar 

  10. Chen, M.Y., Hauptmann, A.: MoSIFT: Recognizing human actions in surveillance videos. CMU-CS-09-161, Carnegie Mellon University (2009)

    Google Scholar 

  11. Padua, F.L.C., Carceroni, R.L., Santos, G.A.M.R., Kutulakos, K.N.: Linear sequence-to-sequence alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 32(2), 304–320 (2010)

    Article  Google Scholar 

  12. Junejo, I.N., Dexter, E., Laptev, I., Pérez, P.: Cross-view action recognition from temporal self-similarities. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 293–306. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Junejo, I.N., Dexter, E., Laptev, I., Prez, P.: View-Independent Action Recognition from Temporal Self-Similarities. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 172–185 (2011)

    Article  Google Scholar 

  14. Laptev, I., Belongie, S.J., Perez, P., Wills, J.: Periodic motion detection and segmentation via approximate sequence alignment. In: Proc. Int. Conf. on Computer Vision, vol. 1, pp. 816–823 (2005)

    Google Scholar 

  15. Ukrainitz, Y., Irani, M.: Aligning sequences and actions by maximizing space-time correlations. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 538–550. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Ushizaki, M., Okatani, T., Deguchi, K.: Video synchronization based on co-occurrence of appearance changes in video sequences. In: Proc. International Conference on Pattern Recognition (ICPR), pp. III:71–III:74 (2006)

    Google Scholar 

  17. Gao, Y., Wang, M., Ji, R., Wu, X., Dai, Q.: 3D Object Retrieval with Hausdorff Distance Learning. IEEE Transactions on Industrial Electronics (2013)

    Google Scholar 

  18. Wolf, L., Zomet, A.: Wide baseline matching between unsynchronized video sequences. International Journal of Computer Vision 68(1), 43–52 (2006)

    Article  Google Scholar 

  19. Xu, D., Chang, S.F.: Video Event Recognition Using Kernel Methods with Multilevel Temporal Alignment. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1985–1997 (2008)

    Article  Google Scholar 

  20. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3D Object Retrieval and Recognition with Hypergraph Analysis. IEEE Transactions on Image Processing 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  21. Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 392–405. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Ji, R., Duan, L., Chen, J., Xie, L., Yao, H., Gao, W.: Learning to distribute vocabulary indexing for scalable visual search. IEEE Transactions on Multimedia (2013)

    Google Scholar 

  23. Zhang, L.F., Guan, Z.Y., Hauptmann, A.: Co-Attention model for tiny activity analysis. Neurocomputing 105(1), 51–60 (2013)

    Article  Google Scholar 

  24. Gao, Y., Tang, J.H., Hong, R.C., Yan, S.C., Dai, Q.H., Zhang, N., Chua, T.S.: Camera Constraint-Free View-Based 3D Object Retrieval. IEEE Transactions on Image Processing 21(4), 2269–2281 (2012)

    Article  MathSciNet  Google Scholar 

  25. Gao, Y., Wang, M., Zha, Z., Tian, Q., Dai, Q., Zhang, N.: Less is More: Efficient 3D Object Retrieval with Query View Selection. IEEE Transactions on Multimedia 11(5), 1007–1018 (2011)

    Article  Google Scholar 

  26. Ji, R., Yao, H., Liu, W., Sun, X., Tian, Q.: Task-dependent visual-codebook compression. IEEE Transactions on Image Processing 21(4), 2282–2293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, L., Tang, S., Singhal, S., Ding, G. (2014). Multi-view Action Synchronization in Complex Background. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8326. Springer, Cham. https://doi.org/10.1007/978-3-319-04117-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04117-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04116-2

  • Online ISBN: 978-3-319-04117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics