Abstract
Many problems on graphs can be expressed in the following language: given a graph G = (V,E) and a terminal set T ⊆ V, find a minimum size set S ⊆ V which intersects all “structures” (such as cycles or paths) passing through the vertices in T. We call this class of problems as terminal set problems. In this paper we introduce a general method to obtain faster exact exponential time algorithms for many terminal set problems. More precisely, we show that
-
Node Multiway Cut can be solved in time O(1.4766n).
-
Directed Unrestricted Node Multiway Cut can be solved in time O(1.6181n).
-
There exists a deterministic algorithm for Subset Feedback Vertex Set running in time O(1.8980n) and a randomized algorithm with expected running time O(1.8826n). Furthermore, Subset Feedback Vertex on chordal graphs can be solved in time O(1.6181n).
-
Directed Subset Feedback Vertex Set can be solved in time O(1.9993n).
A key feature of our method is that, it uses the existing best polynomial time, fixed parameter tractable and exact exponential time algorithms for the non-terminal version of the same problem (i.e. when T = V), as subroutines. Therefore faster algorithms for these special cases will imply further improvements in the running times of our algorithms. Our algorithms for Node Multiway Cut, and Subset Feedback Vertex Set on chordal graphs improve the current best algorithms for these problems and answers an open question posed in [15]. Furthermore, our algorithms for Directed Unrestricted Node Multiway Cut and Directed Subset Feedback Vertex Set are the first exact algorithms improving upon the brute force O *(2n)-algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kamiński, M., Paulusma, D.: Finding contractions and induced minors in chordal graphs via disjoint paths. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 110–119. Springer, Heidelberg (2011)
Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)
Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)
Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical Computer Science 411(40), 3736–3756 (2010)
Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem. Algorithmica 55(1), 1–13 (2009)
Corneil, D., Fonlupt, J.: The complexity of generalized clique covering. Discrete Applied Mathematics 22(2), 109–118 (1988–1989)
Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J., Wojtaszczyk, J.: Solving connectivity problems parameterized by treewidth in single exponential time. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 150–159. IEEE (2011)
Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized above lower bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)
Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)
Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumerating minimal subset feedback vertex sets. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 399–410. Springer, Heidelberg (2011)
Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms, 1st edn. Springer-Verlag New York, Inc., New York (2010)
Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: 27th International Symposium on Theoretical Aspects of Computer Science (STACS), vol. 5, pp. 383–394. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2010)
Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: STACS, vol. 5, pp. 383–394 (2010)
Garg, N., Vazirani, V., Yannakakis, M.: Multiway Cuts in Directed and Node Weighted Graphs. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 487–498. Springer, Heidelberg (1994)
Golovach, P.A., Heggernes, P., Kratsch, D., Saei, R.: An exact algorithm for subset feedback vertex set on chordal graphs. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 85–96. Springer, Heidelberg (2012)
Gupta, S., Raman, V., Saurabh, S.: Maximum r-regular induced subgraph problem: Fast exponential algorithms and combinatorial bounds. SIAM J. Discrete Math. 26(4), 1758–1780 (2012)
Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set on at-free graphs. Discrete Applied Mathematics 156(10), 1936–1947 (2008)
Mader, W.: Über die Maximalzahl kreuzungsfreier H-Wege. Arch. Math (Basel) 31(4), 387–402 (1978/1979), http://dx.doi.org/10.1007/BF01226465
Marx, D.: Parameterized Graph Separation Problems. Theor. Comput. Sci. 351(3), 394–406 (2006)
Mishra, S., Raman, V., Saurabh, S., Sikdar, S.: König deletion sets and vertex covers above the matching size. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 836–847. Springer, Heidelberg (2008)
Pilipczuk, M., Pilipczuk, M.: Finding a maximum induced degenerate subgraph faster than 2 n. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 3–12. Springer, Heidelberg (2012)
Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)
Razgon, I.: Computing Minimum Directed Feedback Vertex Set in O *(1.9977n). In: ICTCS, pp. 70–81 (2007)
Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)
Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Information Processing Letters 24(2), 133–137 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Chitnis, R., Fomin, F.V., Lokshtanov, D., Misra, P., Ramanujan, M.S., Saurabh, S. (2013). Faster Exact Algorithms for Some Terminal Set Problems. In: Gutin, G., Szeider, S. (eds) Parameterized and Exact Computation. IPEC 2013. Lecture Notes in Computer Science, vol 8246. Springer, Cham. https://doi.org/10.1007/978-3-319-03898-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-03898-8_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03897-1
Online ISBN: 978-3-319-03898-8
eBook Packages: Computer ScienceComputer Science (R0)