Texture Classification via Local Feature Representation of Multi-order Gradients | SpringerLink
Skip to main content

Texture Classification via Local Feature Representation of Multi-order Gradients

  • Conference paper
Advances in Multimedia Information Processing – PCM 2013 (PCM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8294))

Included in the following conference series:

  • 2941 Accesses

Abstract

This paper presents a novel method to texture classification using local feature representation of multiple order gradients. Different from the state of the art approaches in literature that make use of the widely-used first order gradient based local descriptors, e.g. LBP, HOG, DAISY, SIFT, etc., we claim that the second order gradient based ones also provide critical contribution to classification performance, and thus propose to use Histogram of Second Order Gradients (HSOG) to describe micro-texton patterns. Both the similarity measurements of first and second order gradients computed by Bag-of-Feature modeling and SVM classifier are combined for decision making. Experimental results achieved on the Outex_TC dataset not only illustrate that the second order gradient based HSOG is effective to classify texture images, but also highlight that multiple order gradient based description by fusing complementary clues of the first and second order gradients is a promising solution to improve the accuracy in texture classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  3. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1. IEEE (2005)

    Google Scholar 

  5. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. IEEE (2008)

    Google Scholar 

  6. Zhang, J., et al.: Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)

    Article  Google Scholar 

  7. Smith, A.T., Scott-Samuel, N.E.: First-order and second-order signals combine to improve perceptual accuracy. JOSA A 18(9), 2267–2272 (2001)

    Article  Google Scholar 

  8. Huang, D., et al.: HSOG: a novel local descriptor based on histograms of second order gradients for object categorization. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, ACM (2013)

    Google Scholar 

  9. Zhu, C., Bichot, C.-E., Chen, L.: Visual object recognition using daisy descriptor. In: IEEE International Conference on Multimedia and Expo (ICME). IEEE (2011)

    Google Scholar 

  10. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Csurka, G., et al.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1 (2004)

    Google Scholar 

  12. Ojala, T., et al.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1. IEEE (2002)

    Google Scholar 

  13. Schwartz, W.R., et al.: A novel feature descriptor based on the shearlet transform. In: 2011 18th IEEE International Conference on Image Processing (ICIP). IEEE (2011)

    Google Scholar 

  14. Khan, Y.N., Komma, P., Zell, A.: High resolution visual terrain classification for outdoor robots. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE (2011)

    Google Scholar 

  15. Xu, Y., et al.: Combining powerful local and global statistics for texture description. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. IEEE (2009)

    Google Scholar 

  16. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1265–1278 (2005)

    Article  Google Scholar 

  17. Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Wei, H., Liu, Q., Wang, Y., Zhu, C., Huang, D. (2013). Texture Classification via Local Feature Representation of Multi-order Gradients. In: Huet, B., Ngo, CW., Tang, J., Zhou, ZH., Hauptmann, A.G., Yan, S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham. https://doi.org/10.1007/978-3-319-03731-8_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03731-8_79

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03730-1

  • Online ISBN: 978-3-319-03731-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics