Abstract
This paper presents a novel method to texture classification using local feature representation of multiple order gradients. Different from the state of the art approaches in literature that make use of the widely-used first order gradient based local descriptors, e.g. LBP, HOG, DAISY, SIFT, etc., we claim that the second order gradient based ones also provide critical contribution to classification performance, and thus propose to use Histogram of Second Order Gradients (HSOG) to describe micro-texton patterns. Both the similarity measurements of first and second order gradients computed by Bag-of-Feature modeling and SVM classifier are combined for decision making. Experimental results achieved on the Outex_TC dataset not only illustrate that the second order gradient based HSOG is effective to classify texture images, but also highlight that multiple order gradient based description by fusing complementary clues of the first and second order gradients is a promising solution to improve the accuracy in texture classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1. IEEE (2005)
Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. IEEE (2008)
Zhang, J., et al.: Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)
Smith, A.T., Scott-Samuel, N.E.: First-order and second-order signals combine to improve perceptual accuracy. JOSA A 18(9), 2267–2272 (2001)
Huang, D., et al.: HSOG: a novel local descriptor based on histograms of second order gradients for object categorization. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, ACM (2013)
Zhu, C., Bichot, C.-E., Chen, L.: Visual object recognition using daisy descriptor. In: IEEE International Conference on Multimedia and Expo (ICME). IEEE (2011)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Csurka, G., et al.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1 (2004)
Ojala, T., et al.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1. IEEE (2002)
Schwartz, W.R., et al.: A novel feature descriptor based on the shearlet transform. In: 2011 18th IEEE International Conference on Image Processing (ICIP). IEEE (2011)
Khan, Y.N., Komma, P., Zell, A.: High resolution visual terrain classification for outdoor robots. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE (2011)
Xu, Y., et al.: Combining powerful local and global statistics for texture description. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. IEEE (2009)
Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1265–1278 (2005)
Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Wei, H., Liu, Q., Wang, Y., Zhu, C., Huang, D. (2013). Texture Classification via Local Feature Representation of Multi-order Gradients. In: Huet, B., Ngo, CW., Tang, J., Zhou, ZH., Hauptmann, A.G., Yan, S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham. https://doi.org/10.1007/978-3-319-03731-8_79
Download citation
DOI: https://doi.org/10.1007/978-3-319-03731-8_79
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03730-1
Online ISBN: 978-3-319-03731-8
eBook Packages: Computer ScienceComputer Science (R0)