Subject Specific Modeling of the Muscle Activation: Application to the Facial Mimics | SpringerLink
Skip to main content

Subject Specific Modeling of the Muscle Activation: Application to the Facial Mimics

  • Conference paper
Knowledge and Systems Engineering

Abstract

Facial muscle activation information is of interest for the simulation of the facial mimics. In the present study, three positions (smile, pronunciation of sound ‘Pou’ and ‘O’) describing specific motions of the facial mimics were acquired using MRI. Finite element (FE) simulations of these three facial muscle activation behaviors were performed on a specific muscle zygomaticus major (ZM) one of the most relevant in facial mimics. Numerical results were compared qualitatively and quantitatively with those derived from MRI images. The MRI-based average displacements of the ZM muscle are 4 ± 2mm, 4.5 ± 1.4 mm and 6 ± 3mm for ‘Smile’, ‘Pou’ and ‘O’ positions respectively. The FE-based average displacements of the ZM muscle are 1.9 ± 0.8 mm 2 ± 1 mm and 2.8 ± 1.1 mm for ‘Smile’, ‘Pou’ and ‘O’ positions respectively. This present study shows the development of a methodology for subject specific modeling with confrontation between experimental and numerical results for simulation of facial mimics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ho Ba Tho, M.C.: Bone and joints modelling with individualised geometric and mechanical properties derived from medical images. Computer Mechanics and Engineering Sciences 4(3&4), 489–496 (2003)

    MATH  Google Scholar 

  2. Langenbach, G.E.J., Hannam, A.G.: The role of passive muscle tensions in a three-dimensional dynamic model of the human jaw. Archives of Oral Biology 44(7), 557–573 (1999)

    Article  Google Scholar 

  3. May, B., Saha, S., Saltzman, M.: A three-dimensional mathematical model of temporomandibular joint loading. Clinical Biomechanics 16, 489–495 (2001)

    Article  Google Scholar 

  4. Shi, J., Curtis, N., Fitton, L.C., O’Higgins, P., Fagan, M.J.: Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods. Journal of Theoretical Biology 310, 21–30 (2012)

    Article  Google Scholar 

  5. Dao, T.T.: Modeling of Musculoskeletal System of the Lower Limbs: Biomechanical Model vs. Meta Model (Knowledge-based Model). PhD Thesis, University of Technology of Compigne, 1–194 (2009)

    Google Scholar 

  6. Chabanas, M., Luboz, V., Payan, Y.: Patient specific Finite Element model of the face soft tissue for computer-assisted maxillofacial surgery. Medical Image Analysis 7(2), 131–151 (2003)

    Article  Google Scholar 

  7. Röhrle, O., Pullan, A.J.: Three-dimensional finite element modelling of muscle forces during mastication. Journal of Biomechanics 40(15), 3363–3372 (2007)

    Article  Google Scholar 

  8. Hung, A., Mithraratne, K., Sagar, M., Hunter, P.: Multilayer Soft Tissue Continuum Model: Towards Realistic Simulation of Facial Expressions. World Academy of Science, Engineering and Technology 54, 134–138 (2009)

    Google Scholar 

  9. Nazari, M., Perrier, P., Chabanas, M., Payan, Y.: Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation. Computer Methods in Biomechanics & Biomedical Engineering 13(4), 469–548 (2010)

    Article  Google Scholar 

  10. Dao, T.T., Pouletaut, P., Goebel, J.C., Pinzano, A., Gillet, P., Ho Ba Tho, M.C.: Differential Geometrical Transformation Applied to Point Clouds Generation from Image-based Surface Model. Proceedings of International Society of Biomechanics Congress, 531 (2011)

    Google Scholar 

  11. Bideau, N., Dao, T.T., Charleux, F., Aufaure, P., Ho Ba Tho, M.C., Rassineux, A.: Dveloppement d’une chaine de calcul par ments finis partir de donnes issues de l’imagerie mdicale. In: Proceedings of 10me Colloque National en Calcul des Structures, CSMA, pp. 1–6 (2011)

    Google Scholar 

  12. Martins, J.A.C., Pires, E.B., Salvado, R., Dinis, P.B.: A numerical model of passive and active behavior of skeletal muscles. Comput. Methods Appl. Mech. Engineering 151, 419–433 (1998)

    Article  MATH  Google Scholar 

  13. Dao, T.T., Marin, F., Pouletaut, P., Aufaure, P., Charleux, F., Ho Ba Tho, M.C.: Estimation of Accuracy of Patient Specific Musculoskeletal Modeling: Case Study on a Post-Polio Residual Paralysis Subject. Computer Method in Biomechanics and Biomedical Engineering 15(7), 745–751 (2012)

    Article  Google Scholar 

  14. Dao, T.T., Pouletaut, P., Goebel, J.C., Pinzano, A., Gillet, P., Ho Ba Tho, M.C.: In vivo characterization of morphological properties and contact areas of the rat cartilage derived from high-resolution MRI. Biomedical Engineering and Research 32(3), 204–213 (2011)

    Google Scholar 

  15. Blemker, S.S., Asakawa, D.S., Gold, G.E., Delp, S.L.: Image-based musculskeletal modeling: Applications, advances, and future opportunities. Journal of Magnetic Resonance Imaging 25, 441–451 (2007)

    Article  Google Scholar 

  16. Yucesoy, C.A., Koopman, B.H.F.J.M., Huijing, P.A., Grootenboer, H.J.: Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model. Journal of Biomechanics 35, 1253–1262 (2002)

    Article  Google Scholar 

  17. Fernandez, J.W., Buist, M.L., Nickerson, D.P., Hunter, P.J.: Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: A finite element framework. Medical Engineering & Physics 27, 862–870 (2005)

    Article  Google Scholar 

  18. Blemker, S.S., Pinsky, P.M., Delp, S.L.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. Journal of Biomechanics 38, 657–665 (2005)

    Article  Google Scholar 

  19. Tang, C.Y., Zhang, G., Tsui, C.P.: A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behavior. Journal of Biomechanics 42, 865–872 (2009)

    Article  Google Scholar 

  20. Lu, Y.T., Zhu, H.X., Richmond, S., Middleton, J.: A visco-hyperelastic model for skeletal muscle tissue under high strain rates. Journal of Biomechanics 43, 2629–2632 (2010)

    Article  Google Scholar 

  21. Sifakis, E., Selle, A., Robinson-Mosher, A., Fedkiw, R.: Simulating Speech with a Physics-Based Facial Muscle Model. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), pp. 1–10 (2006)

    Google Scholar 

  22. Sifakis, E., Neverov, I., Fedkiw, R.: Automatic Determination of Facial Muscle Activations from Sparse Motion Capture Marker Data. ACM Transactions on Graphics 24, 417–425 (2005)

    Article  Google Scholar 

  23. Shinagawa, H., Murano, E.Z., Zhuo, J., Landman, B., Gullapalli, R.P., Prince, J.L., Stone, M.: Effect of oral appliances on genioglossus muscle tonicity seen with diffusion tensor imaging: A pilot study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 107(3), e57–e63 (2009)

    Google Scholar 

  24. McMillan, A.B., Shi, D., Pratt, S.J.P., Lovering, R.M.: Diffusion Tensor MRI to Assess Damage in Healthy and Dystrophic Skeletal Muscle after Lengthening Contractions. Journal of Biomedicine and Biotechnology, 1–10 (2011)

    Google Scholar 

  25. Bensamoun, S., Ringleb, S.I., Littrell, L., Chen, Q., Brennan, M., Ehman, R.L., An, K.N.: Determination of thigh muscle stiffness using magnetic resonance elastography. J. Magn. Reson. Imaging 22, 242–247 (2006)

    Article  Google Scholar 

  26. Ringleb, S.I., Bensamoun, S., Chen, Q., Manduca, A., Ehman, R.L., An, K.N.: Applications of Magnetic Resonance Elastography to Healthy and Pathologic Skeletal Muscle. J. Magn. Reson. Imaging 25(2), 301–309 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tho, M.C.H.B., Dao, T.T., Bensamoun, S., Dakpe, S., Devauchelle, B., Rachik, M. (2014). Subject Specific Modeling of the Muscle Activation: Application to the Facial Mimics. In: Huynh, V., Denoeux, T., Tran, D., Le, A., Pham, S. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-02821-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02821-7_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02820-0

  • Online ISBN: 978-3-319-02821-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics