Abstract
This study applies Artificial Intelligence techniques to analyse the results obtained in different tests to assess the skills of high qualified personnel as engineers, pilots, doctors, dentists, etc. Several Exploratory Projection Pursuit techniques are successfully applied to a novel and real dataset for the assessment of personnel skills and to identify weaknesses to be improved in a later phase. These techniques reduce the complexity of the evaluation process and allow identifying the most relevant aspects in the personnel training in an intuitive way, enhancing the particular training process and thus, the human resources management as a whole and saving training costs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Klett, F., Wang, M.: The War for Talent: Technologies and solutions toward competency and skills development and talent identification (Editorial). Knowledge Management & E-Learning 5(1), 1–9 (2013)
Cha, M., Han, S., Lee, J., Choi, B.: A virtual reality based fire training simulator integrated with fire dynamics data. Fire Safety Journal 50, 12–24 (2012)
Rhienmora, P., Haddawy, P., Suebnukarn, S., Dailey, M.N.: Intelligent dental training simulator with objective skill assessment and feedback. Artificial Intelligence in Medicine 52(2), 115–121 (2011)
Jardón, A., Victores, J.G., Martínez, S., Balaguer, C.: Experience acquisition simulator for operating microtuneling boring machines. Automation in Construction 23, 33–46 (2012)
Per Bodin, P., Nylund, M., Battelino, M.: SATSIM—A real-time multi-satellite simulator for test and validation in formation flying projects. Acta Astronautica 74, 29–39 (2012)
Peremezhney, N., Connaughton, C., Unali, G., Hines, E., Lapkin, A.A.: Application of dimensionality reduction to visualisation of high-throughput data and building of a classification model in formulated consumer product design. Chemical Engineering Research and Design 90(12), 2179–2185 (2012)
Song, M., Yang, H., Siadat, S.H., Pechenizkiy, M.: A comparative study of dimensionality reduction techniques to enhance trace clustering performances. Expert Systems with Applications 40(9), 3722–3737 (2013)
Herrero, Á., Zurutuza, U., Corchado, E.: A Neural Visualization IDS For Honeynet Data. International Journal of Neural Systems 22(2) (2012)
Vera, V., Corchado, E., Redondo, R., Sedano, J., García, Á.E.: Applying Soft Computing Techniques to Optimise a Dental Milling Process. Neurocomputing 109, 94–104 (2013)
Baruque, B., Corchado, E., Yin, H.: The s(2)-ensemble fusion algorithm. International Journal of Neural Systems 21(6), 505–525 (2011)
Cordon, O., Fernández-Caballero, A., Gámez, J.A., Hoffmann, F.: The impact of soft computing for the progress of artificial intelligence. Applied Soft Computing 11(2), 1491–1492 (2011)
Abraham, A.: Hybrid soft computing and applications. International Journal of Computational Intelligence and Applications 8(1), 5–7 (2009)
Wilk, T., Wozniak, M.: Soft computing methods applied to combination of one-class classifiers. Neurocomputing 75(1), 185–193 (2012)
Kohonen, T.: The self-organizing map. Neurocomputing 21(1-3), 1–6 (1998)
Corchado, E., Baruque, B.: Wevos-visom: An ensemble summarization algorithm for enhanced data visualization. Neurocomputing 75(1), 171–184 (2012)
Sedano, J., de la Cal, E., Curiel, L., Villar, J., Corchado, E.: Soft computing for detecting thermal insulation failures in buildings. In: Proceedings of the 9th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2009, vol. 4, pp. 1392–1402 (2009)
Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.: A soft computing based method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(12), 103–115 (2010)
Leray, P., Gallinari, P.: Feature selection with neural networks. Behaviormetrika 26, 145–166 (1999)
Verikas, A., Bacauskiene, M.: Feature selection with neural networks. Pattern Recognition Letters 23(11), 1323–1335 (2002)
Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Education Psychology 24, 417–444 (1933)
Oja, E., Ogawa, H., Wangviwattana, J.: Principal components analysis by homogeneous neural networks, part 1, the weighted subspace criterion. IEICE Transaction on Information and Systems E75D, 366–375 (1992)
Krömer, P., Corchado, E., Snášel, V., Platoš, J., García-Hernández, L.: Neural PCA and Maximum Likelihood Hebbian Learning on the GPU. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 132–139. Springer, Heidelberg (2012)
Friedman, J.: Exploratory projection pursuit. Journal of the American Statistical Association 82(397), 249–266 (1987)
Herrero, Á., Corchado, E., SáizBárcena, L., Abraham, A.: DIPKIP: A Connectionist Knowledge Management System to Identify Knowledge Deficits in Practical Cases. Computational Intelligence 26(1), 26–56 (2010)
Corchado, E., Herrero, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing 11(2), 2042–2056 (2011)
Herrero, A., Corchado, E., Gastaldo, P., Zunino, R.: Neural projection techniques for the visual inspection of network traffic. Neurocomputing 72(16-18), 3649–3658 (2009)
Seung, H., Socci, N., Lee, D.: The rectified gaussian distribution. In: Advances in Neural Information Processing Systems, vol. 10, pp. 350–356 (1998)
Corchado, E., Herrero, Á.: Neural visualization of network traffic data for intrusion detection. Appl. Soft Comput. 11(2), 2042–2056 (2011)
Bakker, D., Lagerweij, M., Wesselink, P., Vervoorn, M.: Transfer of Manual Dexterity Skills Acquired on the SIMODONT, a Dental Haptic Trainer with a Virtual Environment, to Reality, A Pilot Study. Bio-Algorithms and Med-Systems 6(11), 21–24 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Quintián, H. et al. (2014). Soft Computing Techniques for Skills Assessment of Highly Qualified Personnel. In: Herrero, Á., et al. International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. Advances in Intelligent Systems and Computing, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-01854-6_68
Download citation
DOI: https://doi.org/10.1007/978-3-319-01854-6_68
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-01853-9
Online ISBN: 978-3-319-01854-6
eBook Packages: EngineeringEngineering (R0)