Mapping System for Merging Ontologies | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 488))

Abstract

In this paper we present a new mapping system for merging OWL ontologies. This work is situated in the general context of stored information heterogeneity in a decisional system such as data, metadata and knowledge, for cohabitation and reconciliation of these information by mediation. Our Mapping approach focuses on computing semantic similarity between concepts of ontologies to merge, it is based on a weighted combination of computing similarity methods, we use syntactic, lexical, structural, and semantic technics. The proposed mapping process makes use of several types of information in a manner that increases the mapping accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Castano, S., Ferrara, A., Montanelli, S.: Matching ontologies in open networked systems: Techniques and applications. In: Spaccapietra, S., Atzeni, P., Chu, W.W., Catarci, T., Sycara, K. (eds.) Journal on Data Semantics V. LNCS, vol. 3870, pp. 25–63. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Elbyed, A.: ROMIE, une approche d’alignement d’ontologies à base d’instances. Doctoral thesis. National Institute of telecommunications (2009), http://tel.archives-ouvertes.fr/docs/00/54/18/74/PDF/TheseELBYED.pdf

  4. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: Proc. 15th European Conference on Artificial Intelligence (ECAI), Valencia, ES, pp. 333–337 (2004)

    Google Scholar 

  5. Jerome, E., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

    Google Scholar 

  6. Fergnani, A.: Ontology dynamics for Semantic Web: the MOMIS approach (2002), http://www.dbgroup.unimo.it/tesi/fergnani.pdf

  7. Gangemi, A., Steve, G., Giacomelli, F.: ONIONS: An Ontological Methodology for Taxonomic Knowledge Integration. In: ECAI 1996 Workshop on Ontological Engineering, Budapest (1996)

    Google Scholar 

  8. Giunchiglia, F., Shvaiko, P.: Semantic matching. The Knowledge Engineering Review 18(3), 265–280 (2003)

    Article  Google Scholar 

  9. Gotoh, O.: An improved algorithm for matching biological sequences. Journal of Molecular Biology 162(3), 705–708 (1982)

    Article  Google Scholar 

  10. Jaro, M.A.: Advances in record linking methodology as applied to the 1985 census of Tampa Florida. Journal of the American Statistical Society 84(406), 414–420 (1989)

    Article  Google Scholar 

  11. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings on International Conference on Research in Computational Linguistics, Taiwan (1997)

    Google Scholar 

  12. Ahmed, K.A.: A Multi-Matching Technique for Combining Similarity Measures in Ontology Integration, A Thesis, Concordia, University,Montréal, Québec, Canada (2010)

    Google Scholar 

  13. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707 (1966)

    MathSciNet  Google Scholar 

  14. Li, Y., Zhong, Q., Li, J., Tang, J.: Results of ontology alignment with RiMOM. In: Proc. International workshop on Ontology Matching (OM), Busan, Korea, November 11, pp. 227–235 (2007)

    Google Scholar 

  15. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: Proceeding of KR, pp. 483–493 (2000)

    Google Scholar 

  16. Monge, A., Elkan, C.: The field-matching problem: algorithm and applications. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 267–270 (1996)

    Google Scholar 

  17. Noy, N.F., Musen, M.A.: The prompt suite: interactive tools for ontology merging and mapping. Int. J. Hum.-Comput. Stud. 59(6), 983–1024 (2003)

    Article  Google Scholar 

  18. Ontology Alignment Evaluation Initative, Benchmarks results (2010), http://oaei.ontologymatching.org/2010/results/benchmarks/index.html

  19. Ontology Alignment Evaluation Initiative Test5 library (2011), http://oaei.ontologymatching.org/2011/benchmarks

  20. Rada, R., Mili, H., Bicknel, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transaction on Systems, Man, and Cybernetics 19(1), 17–30 (1989)

    Article  Google Scholar 

  21. Resnik, P.: Semantic similarity in a taxonomy: An information based measure and its application to problems of ambiguity in natural language. Journal of 2. Artificial Intelligence Research 11, 95–130 (1999)

    MATH  Google Scholar 

  22. Smith, T., Waterman, M.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  Google Scholar 

  23. Stumme, G., Maedche, A.: FCA-merge: bottom-up merging of ontologies. In: 17th IJCAI, Seattle (WA US), pp. 225–230 (2001)

    Google Scholar 

  24. Suchanek, F., Kasneci, G., Weikum, G.Y.: A Large Ontology from Wikipedia and WordNet. Elsevier Journal of Web Semantics 6(3), 203–217 (2008)

    Article  Google Scholar 

  25. Umer, Q., Mundy, D.: Semantically Intelligent Semi-Automated Ontology Integration. In: Proceedings of the World Congress on Engineering, WCE 2012, London, U.K., July 4 - 6, vol. II (2012)

    Google Scholar 

  26. Winkler, W.E.: The State of Record Linkage and Current Research Problems. Rapport interne, Statistical Research Division, U.S. Census Bureau (1999)

    Google Scholar 

  27. Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: Proceedings of the 32nd Annual Meetings of the Associations for Computational Linguistics, pp. 133–138 (1994)

    Google Scholar 

  28. Zahaf, A., Malki, M., Fellah, A.: Alignement des ontologies: utilisation de WordNet et une nouvelle mesure structurelle. In: Proceeding CORIA, pp. 401–408 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Messaouda Fareh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fareh, M., Boussaid, O., Chalal, R. (2013). Mapping System for Merging Ontologies. In: Amine, A., Otmane, A., Bellatreche, L. (eds) Modeling Approaches and Algorithms for Advanced Computer Applications. Studies in Computational Intelligence, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-319-00560-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00560-7_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00559-1

  • Online ISBN: 978-3-319-00560-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics