Abstract
A fully automated technique for wood pith detection (APD), relying on the concentric shape of the structure of wood ring slices, is introduced. The method estimates the ring’s local orientations using the 2D structure tensor and finds the pith position, optimizing a cost function designed for this problem. We also present a variant (APD-PCL) using the parallel coordinate space that enhances the method’s effectiveness when there are no clear tree ring patterns. Furthermore, refining Kurdthongmee’s work, a YoloV8 net is trained for pith detection, producing a deep learning-based approach (APD-DL). All methods were tested on seven datasets, including images captured under diverse conditions (controlled laboratory settings, sawmill, and forest) and featuring various tree species (Pinus taeda, Douglas fir, Abies alba, and Gleditsia triacanthos). All proposed approaches outperform existing state-of-the-art methods and can be used in CPU-based real-time applications. Additionally, we provide a novel dataset comprising images of gymnosperm and angiosperm species. Dataset and source code are available at http://github.com/hmarichal93/apd.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Using the python implementation in scipy.optimize.minimize method.
- 2.
We impose this restriction due to the GPU memory limitations encountered during the training of the APD-DL method.
References
Bigun, J., Granlund, G., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 775–790 (1991). https://doi.org/10.1109/34.85668
Cerda, M., Hitschfeld-Kahler, N., Mery, D.: Robust tree-ring detection. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 575–585. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77129-6_50
Decelle, R., Ngo, P., Debled-Rennesson, I., Mothe, F., Longuetaud, F.: Ant colony optimization for estimating pith position on images of tree log ends. Image Process. On Line 12, 558–581 (2022). https://doi.org/10.5201/ipol.2022.338
Dubska, M., Herout, A., Havel, J.: PClines—line detection using parallel coordinates. In: Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1489–1494 (2011). https://doi.org/10.1109/CVPR.2011.5995501
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692
Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8 (2023). https://github.com/ultralytics/ultralytics
Kennel, P., Borianne, P., Subsol, G.: An automated method for tree-ring delineation based on active contours guided by DT-CWT complex coefficients in photographic images: application to Abies alba wood slice images. Comput. Electron. Agric. 118, 204–214 (2015). https://doi.org/10.1016/j.compag.2015.09.009
Kraft, D.: A Software Package for Sequential Quadratic Programming. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht, Wiss. Berichtswesen d. DFVLR (1988). https://books.google.com.uy/books?id=4rKaGwAACAAJ
Kurdthongmee, W.: A comparative study of the effectiveness of using popular DNN object detection algorithms for pith detection in cross-sectional images of parawood. Heliyon 6(2), e03480 (2020). https://doi.org/10.1016/j.heliyon.2020.e03480. https://www.sciencedirect.com/science/article/pii/S240584402030325X
Kurdthongmee, W., Suwannarat, K.: Locating wood pith in a wood stem cross sectional image using yolo object detection. In: 2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), pp. 1–6 (2019). https://doi.org/10.1109/TAAI48200.2019.8959823
Kurdthongmee, W., Suwannarat, K., Panyuen, P., Sae-Ma, N.: A fast algorithm to approximate the pith location of rubberwood timber from a normal camera image. In: 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 1–6 (2018). https://doi.org/10.1109/JCSSE.2018.8457375
Longuetaud, F., et al.: Traceability and quality assessment of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) logs: the TreeTrace_Douglas database. Ann. For. Sci. 79(46) (2022). https://doi.org/10.1186/s13595-022-01163-7. https://hal.science/hal-03658479
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2019)
Makela, K., Ophelders, T., Quigley, M., Munch, E., Chitwood, D., Dowtin, A.: Automatic tree ring detection using Jacobi sets (2020). https://doi.org/10.48550/ARXIV.2010.08691. https://arxiv.org/abs/2010.08691
Marichal, H., et al.: UruDendro: An Uruguayan Disk Wood Database For Image Processing (2023). https://iie.fing.edu.uy/proyectos/madera
Marichal, H., Passarella, D., Randall, G.: CS-TRD: a cross sections tree ring detection method (2023)
Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high performance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS, vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-38043-4_16
Norell, K.: An automatic method for counting annual rings in noisy sawmill images. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 307–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04146-4_34
Norell, K., Borgefors, G.: Estimation of pith position in untreated log ends in sawmill environments. Comput. Electron. Agric. 63(2), 155–167 (2008). https://doi.org/10.1016/j.compag.2008.02.006. https://www.sciencedirect.com/science/article/pii/S016816990800077X
Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaïane, O.R., Jägersand, M.: U\( ^{2}\)-net: going deeper with nested u-structure for salient object detection. CoRR abs/2005.09007 (2020). https://arxiv.org/abs/2005.09007
Schraml, R., Uhl, A.: Pith estimation on rough log end images using local Fourier spectrum analysis. In: Proceedings of the 14th Conference on Computer Graphics and Imaging (CGIM 2013), Innsbruck, AUT. vol. 10, pp. 2013–797. Citeseer (2013)
Acknowledgments
The experiments presented in this paper used ClusterUY [17] (site: URL: https://cluster.uy). We had valuable conversations with J. M. Morel and J. Di Martino. This work was supported by project ANII-FMV-176061.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Marichal, H., Passarella, D., Randall, G. (2025). Automatic Wood Pith Detector: Local Orientation Estimation and Robust Accumulation. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15317. Springer, Cham. https://doi.org/10.1007/978-3-031-78447-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-78447-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78446-0
Online ISBN: 978-3-031-78447-7
eBook Packages: Computer ScienceComputer Science (R0)