Automatic Wood Pith Detector: Local Orientation Estimation and Robust Accumulation | SpringerLink
Skip to main content

Automatic Wood Pith Detector: Local Orientation Estimation and Robust Accumulation

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15317))

Included in the following conference series:

  • 71 Accesses

Abstract

A fully automated technique for wood pith detection (APD), relying on the concentric shape of the structure of wood ring slices, is introduced. The method estimates the ring’s local orientations using the 2D structure tensor and finds the pith position, optimizing a cost function designed for this problem. We also present a variant (APD-PCL) using the parallel coordinate space that enhances the method’s effectiveness when there are no clear tree ring patterns. Furthermore, refining Kurdthongmee’s work, a YoloV8 net is trained for pith detection, producing a deep learning-based approach (APD-DL). All methods were tested on seven datasets, including images captured under diverse conditions (controlled laboratory settings, sawmill, and forest) and featuring various tree species (Pinus taeda, Douglas fir, Abies alba, and Gleditsia triacanthos). All proposed approaches outperform existing state-of-the-art methods and can be used in CPU-based real-time applications. Additionally, we provide a novel dataset comprising images of gymnosperm and angiosperm species. Dataset and source code are available at http://github.com/hmarichal93/apd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Using the python implementation in scipy.optimize.minimize method.

  2. 2.

    We impose this restriction due to the GPU memory limitations encountered during the training of the APD-DL method.

References

  1. Bigun, J., Granlund, G., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 775–790 (1991). https://doi.org/10.1109/34.85668

    Article  Google Scholar 

  2. Cerda, M., Hitschfeld-Kahler, N., Mery, D.: Robust tree-ring detection. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 575–585. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77129-6_50

    Chapter  Google Scholar 

  3. Decelle, R., Ngo, P., Debled-Rennesson, I., Mothe, F., Longuetaud, F.: Ant colony optimization for estimating pith position on images of tree log ends. Image Process. On Line 12, 558–581 (2022). https://doi.org/10.5201/ipol.2022.338

    Article  Google Scholar 

  4. Dubska, M., Herout, A., Havel, J.: PClines—line detection using parallel coordinates. In: Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1489–1494 (2011). https://doi.org/10.1109/CVPR.2011.5995501

  5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  6. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8 (2023). https://github.com/ultralytics/ultralytics

  7. Kennel, P., Borianne, P., Subsol, G.: An automated method for tree-ring delineation based on active contours guided by DT-CWT complex coefficients in photographic images: application to Abies alba wood slice images. Comput. Electron. Agric. 118, 204–214 (2015). https://doi.org/10.1016/j.compag.2015.09.009

    Article  Google Scholar 

  8. Kraft, D.: A Software Package for Sequential Quadratic Programming. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht, Wiss. Berichtswesen d. DFVLR (1988). https://books.google.com.uy/books?id=4rKaGwAACAAJ

  9. Kurdthongmee, W.: A comparative study of the effectiveness of using popular DNN object detection algorithms for pith detection in cross-sectional images of parawood. Heliyon 6(2), e03480 (2020). https://doi.org/10.1016/j.heliyon.2020.e03480. https://www.sciencedirect.com/science/article/pii/S240584402030325X

    Article  Google Scholar 

  10. Kurdthongmee, W., Suwannarat, K.: Locating wood pith in a wood stem cross sectional image using yolo object detection. In: 2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), pp. 1–6 (2019). https://doi.org/10.1109/TAAI48200.2019.8959823

  11. Kurdthongmee, W., Suwannarat, K., Panyuen, P., Sae-Ma, N.: A fast algorithm to approximate the pith location of rubberwood timber from a normal camera image. In: 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 1–6 (2018). https://doi.org/10.1109/JCSSE.2018.8457375

  12. Longuetaud, F., et al.: Traceability and quality assessment of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) logs: the TreeTrace_Douglas database. Ann. For. Sci. 79(46) (2022). https://doi.org/10.1186/s13595-022-01163-7. https://hal.science/hal-03658479

  13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2019)

    Google Scholar 

  14. Makela, K., Ophelders, T., Quigley, M., Munch, E., Chitwood, D., Dowtin, A.: Automatic tree ring detection using Jacobi sets (2020). https://doi.org/10.48550/ARXIV.2010.08691. https://arxiv.org/abs/2010.08691

  15. Marichal, H., et al.: UruDendro: An Uruguayan Disk Wood Database For Image Processing (2023). https://iie.fing.edu.uy/proyectos/madera

  16. Marichal, H., Passarella, D., Randall, G.: CS-TRD: a cross sections tree ring detection method (2023)

    Google Scholar 

  17. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high performance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS, vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-38043-4_16

    Chapter  Google Scholar 

  18. Norell, K.: An automatic method for counting annual rings in noisy sawmill images. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 307–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04146-4_34

    Chapter  Google Scholar 

  19. Norell, K., Borgefors, G.: Estimation of pith position in untreated log ends in sawmill environments. Comput. Electron. Agric. 63(2), 155–167 (2008). https://doi.org/10.1016/j.compag.2008.02.006. https://www.sciencedirect.com/science/article/pii/S016816990800077X

    Article  Google Scholar 

  20. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaïane, O.R., Jägersand, M.: U\( ^{2}\)-net: going deeper with nested u-structure for salient object detection. CoRR abs/2005.09007 (2020). https://arxiv.org/abs/2005.09007

  21. Schraml, R., Uhl, A.: Pith estimation on rough log end images using local Fourier spectrum analysis. In: Proceedings of the 14th Conference on Computer Graphics and Imaging (CGIM 2013), Innsbruck, AUT. vol. 10, pp. 2013–797. Citeseer (2013)

    Google Scholar 

Download references

Acknowledgments

The experiments presented in this paper used ClusterUY [17] (site: URL: https://cluster.uy). We had valuable conversations with J. M. Morel and J. Di Martino. This work was supported by project ANII-FMV-176061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Marichal .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4533 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marichal, H., Passarella, D., Randall, G. (2025). Automatic Wood Pith Detector: Local Orientation Estimation and Robust Accumulation. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15317. Springer, Cham. https://doi.org/10.1007/978-3-031-78447-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78447-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78446-0

  • Online ISBN: 978-3-031-78447-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics