Infrared and Visible Image Fusion Method Based on Learnable Joint Sparse Low-Rank Decomposition | SpringerLink
Skip to main content

Infrared and Visible Image Fusion Method Based on Learnable Joint Sparse Low-Rank Decomposition

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15305))

Included in the following conference series:

  • 197 Accesses

Abstract

Deep learning-based separation representation methods have achieved promising performance in image fusion tasks. This is attributed to the fact that the network architecture plays a very important role in the decoupling process. However, building a superior fusion network based on decoupling tasks is difficult in general. Most of the current network constructions for separated representations are still black-boxed design. To overcome this problem, it is proposed to implement decoupled task based on traditional optimization decomposition method and establish a link between the optimal solution and network architecture to construct interpretable separated representation network. In this paper, we propose a deep learning-based learnable joint sparse low-rank separation representation method for multi-source image fusion (LJSLRnet). It avoids blind empirical network design by transforming the optimization problem. Specifically, we propose a learn-able joint sparse low rank model (LJSLR) and construct a LJSLR-based decou-pling module. The LJSLR model is designed as an iterative optimization problem based on matrix multiplication, and then the learned convolutional sparse coding (LCSC) is utilized to convert matrix multiplication into convolutional operation, which is the core of constructing LJSLR-based decoupling module. Next, the it-erative process of optimization is replaced by feedforward network based on iterative threshold shrinkage. To enhance the decoupling ability and robustness of the network, the low-rank sparse loss function and cross-reconstruction loss function are developed. Compared with the existing methods, the experiments verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Y., Liu, Y., Sun, P., Yan, H., Zhao, X., Zhang, L.: IFCNN: a general image fusion framework based on convolutional neural network. Inf. Fusion 54, 99–118 (2020)

    Article  Google Scholar 

  2. Ma, J., Tang, L., Xu, M., Zhang, H., Xiao, G.: Stdfusionnet: an infrared and visible image fusion network based on salient target detection. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)

    Google Scholar 

  3. Xu, H., Ma, J., Le, Z., Jiang, J., Guo, X.: Fusiondn: a unified densely connected network for image fusion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12484–12491 (2020)

    Google Scholar 

  4. Ma, J., Xu, H., Jiang, J., Mei, X., Zhang, X.-P.: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 29, 4980–4995 (2020)

    Article  Google Scholar 

  5. Luo, X., Wang, A., Zhang, Z., Xiang, X., Wu, X.-J.: Latraivf: an infrared and visible image fusion method based on latent regression and adversarial training. IEEE Trans. Instrum. Meas. 70, 1–16 (2021)

    Google Scholar 

  6. Li, H., Wu, X.-J., Durrani, T.: Nestfuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models. IEEE Trans. Instrum. Meas. 69(12), 9645–9656 (2020)

    Article  Google Scholar 

  7. Luo, X., Gao, Y., Wang, A., Zhang, Z., Wu, X.-J.: IFSepR: a general framework for image fusion based on separate representation learning. IEEE Trans. Multimedia 25, 608–623 (2021)

    Article  Google Scholar 

  8. Deng, X., Dragotti, P.L.: Deep convolutional neural network for multi-modal image restoration and fusion. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3333–3348 (2020)

    Article  Google Scholar 

  9. Li, H., Xu, T., Wu, X.-J., Lu, J., Kittler, J.: LRRNet: a novel representation learning guided fusion network for infrared and visible images. IEEE Trans. Pattern Anal. Mach. Intell. 45(9), 11040–11052 (2023)

    Article  Google Scholar 

  10. Sreter, H., Giryes, R.: Learned convolutional sparse coding. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2191–2195. IEEE (2018)

    Google Scholar 

  11. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 57(11), 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  12. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, pp. 399–406 (2010)

    Google Scholar 

  13. Tang, L., Yuan, J., Zhang, H., Jiang, X., Ma, J.: Piafusion: a progressive infrared and visible image fusion network based on illumination aware. Inf. Fusion 83, 79–92 (2022)

    Article  Google Scholar 

  14. Ma, J., Chen, C., Li, C., Huang, J.: Infrared and visible image fusion via gradient transfer and total variation minimization. Inf. Fusion 31, 100–109 (2016)

    Article  Google Scholar 

  15. Li, H., Wu, X.-J., Kittler, J.: RFN-nest: an end-to-end residual fusion network for infrared and visible images. Inf. Fusion 73, 72–86 (2021)

    Article  Google Scholar 

  16. Zhao, Z., et al.: Cddfuse: correlation-driven dual-branch feature decomposition for multimodality image fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5906–5916 (2023)

    Google Scholar 

  17. Ma, J., Yu, W., Liang, P., Li, C., Jiang, J.: Fusiongan: a generative adversarial network for infrared and visible image fusion. Inf. fusion 48, 11–26 (2019)

    Article  Google Scholar 

  18. Tang, L., Yuan, J., Ma, J.: Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network. Inf. Fusion 82, 28–42 (2022)

    Article  Google Scholar 

  19. Zhang, H., Xu, H., Xiao, Y., Guo, X., Ma, J.: Rethinking the image fusion: a fast unified image fusion network based on proportional maintenance of gradient and intensity. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12797–12804 (2020)

    Google Scholar 

  20. Xu, H., Ma, J., Jiang, J., Guo, X., Ling, H.: U2fusion: a unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 502–518 (2020)

    Article  Google Scholar 

  21. Liu, J., et al.: Multi-interactive feature learning and a full-time multi-modality benchmark for image fusion and segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8115–8124 (2023)

    Google Scholar 

  22. Cheng, C., Xu, T., Wu, X.-J.: Mufusion: a general unsupervised image fusion network based on memory unit. Inf. Fusion 92, 80–92 (2023)

    Article  Google Scholar 

  23. Ma, J., Tang, L., Fan, F., Huang, J., Mei, X., Ma, Y.: Swinfusion: cross-domain long-range learning for general image fusion via swin transformer. IEEE/CAA J. Automatica Sinica 9(7), 1200–1217 (2022)

    Article  Google Scholar 

  24. Zhang, H., Ma, J.: SDNet: a versatile squeeze-and-decomposition network for realtime image fusion. Int. J. Comput. Vision 129(10), 2761–2785 (2021)

    Article  Google Scholar 

  25. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  26. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  27. Song, H., Yu, S., Song, L., Yang, X.: Fusion of multispectral and panchromatic satellite images based on contourlet transform and local average gradient. Opt. Eng. 46(2), 020502–020502 (2007)

    Article  Google Scholar 

  28. Issa, N.P., Trepel, C., Stryker, M.P.: Spatial frequency maps in cat visual cortex. J. Neurosci. 20(22), 8504–8514 (2000)

    Article  Google Scholar 

  29. Xydeas, C.S., Petrovic, V., et al.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000)

    Article  Google Scholar 

  30. Haghighat, M.B.A., Aghagolzadeh, A., Seyedarabi, H.: A non-reference image fusion metric based on mutual information of image features. Comput. Electr. Eng. 37(5), 744–756 (2011)

    Article  Google Scholar 

  31. TNO image fusion dataset. figshare (2014). https://doi.org/10.6084/m9.figshare.1008029.v2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, W., Huang, N., Luo, X., Zhang, Z., Xu, T., Wu, XJ. (2025). Infrared and Visible Image Fusion Method Based on Learnable Joint Sparse Low-Rank Decomposition. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15305. Springer, Cham. https://doi.org/10.1007/978-3-031-78169-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78169-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78168-1

  • Online ISBN: 978-3-031-78169-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics