ROISER: Towards Real World Semantic Entity Recognition from Visually-Rich Documents | SpringerLink
Skip to main content

ROISER: Towards Real World Semantic Entity Recognition from Visually-Rich Documents

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15331))

Included in the following conference series:

  • 78 Accesses

Abstract

Visual semantic entity recognition (visual SER) aims to extract contents that fall in key fields from the given visually-rich document image, and it has been widely applied across diverse scenarios. Most existing visual SER methods employ the BIO tagging schema to extract key entities, necessitating well-organized OCR results at the entity level as prior information. However, meeting this prerequisite is challenging in real-world applications. General OCR engines typically provide disordered line-level results, where entities with multiple text lines are split into several segments. Moreover, some adjacent entities may fall into the same detection box, posing challenges for accurate span detection and text aggregation. To address this issue, this paper introduces a novel framework, ROISER (Real wOrld vIsual Semantic Entity Recognition), integrating entity line span detection, line aggregation, and line classification to achieve visual SER with real-world OCR input. Experiment results demonstrate that our model outperforms existing approaches on various benchmarks, showcasing its effectiveness and compatibility for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://huggingface.co/microsoft/layoutlmv3-base.

  2. 2.

    https://huggingface.co/microsoft/layoutlmv3-base-chinese.

References

  1. Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: DocFormer: end-to-end transformer for document understanding. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 973–983. IEEE (2021)

    Google Scholar 

  2. Cao, H., et al.: Query-driven generative network for document information extraction in the wild. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 4261–4271 (2022)

    Google Scholar 

  3. Chi, Z., et al.: InfoXLM: an information-theoretic framework for cross-lingual language model pre-training. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 3576–3588 (2021)

    Google Scholar 

  4. Davis, B., Morse, B., Price, B., Tensmeyer, C., Wigington, C., Morariu, V.: End-to-end document recognition and understanding with dessurt. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision – ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part IV, pp. 280–296. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-25069-9_19

    Chapter  Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  6. Gu, Z., et al.: XYLayoutLM: towards layout-aware multimodal networks for visually-rich document understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4583–4592 (2022)

    Google Scholar 

  7. Jaume, G., Ekenel, H.K., Thiran, J.P.: FUNSD: a dataset for form understanding in noisy scanned documents. In: ICDAR-OST (2019)

    Google Scholar 

  8. Guo, H., Qin, X., Liu, J., Han, J., Liu, J., Ding, E.: EATEN: entity-aware attention for single shot visual text extraction. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 254–259. IEEE (2019)

    Google Scholar 

  9. Ha, J., Haralick, R.M., Phillips, I.T.: Recursive X-Y cut using bounding boxes of connected components. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 2, pp. 952–955. IEEE (1995)

    Google Scholar 

  10. Hong, T., Kim, D., Ji, M., Hwang, W., Nam, D., Park, S.: BROS: a pre-trained language model focusing on text and layout for better key information extraction from documents. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36(10), pp. 10767–10775 (2022)

    Google Scholar 

  11. Hu, K., Wu, Z., Zhong, Z., Lin, W., Sun, L., Huo, Q.: A question-answering approach to key value pair extraction from form-like document images. Proc. AAAI Conf. Artif. Intell. 37(11), 12899–12906 (2023)

    Google Scholar 

  12. Huang, Y., Lv, T., Cui, L., Lu, Y., Wei, F.: LayoutLMv3: pre-training for document AI with unified text and image masking. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 4083–4091 (2022)

    Google Scholar 

  13. Huang, Z., Chen, K., He, J., Bai, X., Karatzas, D., Lu, S., Jawahar, C.: ICDAR2019 competition on scanned receipt OCR and information extraction. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1516–1520. IEEE (2019)

    Google Scholar 

  14. Kim, G., et al.: OCR-free document understanding transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVIII, pp. 498–517. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_29

    Chapter  Google Scholar 

  15. Li, C., et al.: StructuralLM: structural pre-training for form understanding. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6309–6318 (2021)

    Google Scholar 

  16. Li, C., et al.: PP-OCRv3: more attempts for the improvement of ultra lightweight OCR system. arXiv preprint arXiv:2206.03001 (2022)

  17. Li, Y., et al.: StrucTexT: structured text understanding with multi-modal transformers. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1912–1920 (2021)

    Google Scholar 

  18. Liao, H., et al.: DocTr: document transformer for structured information extraction in documents. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19584–19594 (2023)

    Google Scholar 

  19. Lin, Z., et al.: PEneo: unifying line extraction, line grouping, and entity linking for end-to-end document pair extraction. arXiv preprint arXiv:2401.03472 (2024)

  20. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proceedings of the 7th International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  21. Luo, C., Cheng, C., Zheng, Q., Yao, C.: GeoLayoutLM: geometric pre-training for visual information extraction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7092–7101 (2023)

    Google Scholar 

  22. Park, S., et al.: CORD: a consolidated receipt dataset for post-OCR parsing. In: Workshop on Document Intelligence at NeurIPS 2019 (2019)

    Google Scholar 

  23. Peng, Q., et al.: ERNIE-Layout: Layout knowledge enhanced pre-training for visually-rich document understanding. In: Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 3744–3756 (2022)

    Google Scholar 

  24. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning. In: Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D. (eds.) Natural Language Processing Using Very Large Corpora, pp. 157–176. Springer Netherlands, Dordrecht (1999). https://doi.org/10.1007/978-94-017-2390-9_10

    Chapter  Google Scholar 

  25. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 761–769 (2016)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Wang, J., Jin, L., Ding, K.: LiLT: a simple yet effective language-independent layout transformer for structured document understanding. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7747–7757 (2022)

    Google Scholar 

  28. Wang, Z., Xu, Y., Cui, L., Shang, J., Wei, F.: LayoutReader: pre-training of text and layout for reading order detection. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 4735–4744 (2021)

    Google Scholar 

  29. Xu, Y., et al.: LayoutLMv2: multi-modal pre-training for visually-rich document understanding. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2579–2591 (2021)

    Google Scholar 

  30. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: LayoutLM: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)

    Google Scholar 

  31. Xu, Y., et al.: LayoutXLM: multimodal pre-training for multilingual visually-rich document understanding (2021)

    Google Scholar 

  32. Xu, Y., et al.: XFUND: a benchmark dataset for multilingual visually rich form understanding. In: Findings of the Association for Computational Linguistics: ACL 2022, pp. 3214–3224 (2022)

    Google Scholar 

  33. Yang, Z., et al.: Modeling entities as semantic points for visual information extraction in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15358–15367 (2023)

    Google Scholar 

  34. Zhang, C., et al.: Reading order matters: information extraction from visually-rich documents by token path prediction. In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 13716–13730 (2023)

    Google Scholar 

Download references

Acknowledgement

This research is supported in part by National Natural Science Foundation of China (Grant No.: 62441604, 62476093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwen Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Z., Wang, J., Liao, W., Dai, W., Xiong, L., Jin, L. (2025). ROISER: Towards Real World Semantic Entity Recognition from Visually-Rich Documents. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15331. Springer, Cham. https://doi.org/10.1007/978-3-031-78119-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78119-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78118-6

  • Online ISBN: 978-3-031-78119-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics