Federated Learning with Discriminative Naive Bayes Classifier | SpringerLink
Skip to main content

Federated Learning with Discriminative Naive Bayes Classifier

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2024 (IDEAL 2024)

Abstract

Federated Learning has emerged as a promising approach to train machine learning models on decentralized data sources while preserving data privacy. This paper proposes a new federated approach for Naive Bayes (NB) classification, assuming discrete variables. Our approach federates a discriminative variant of NB, sharing meaningless parameters instead of conditional probability tables. Therefore, this process is more reliable against possible attacks. We conduct extensive experiments on 12 datasets to validate the efficacy of our approach, comparing federated and non-federated settings. Additionally, we benchmark our method against the generative variant of NB, which serves as a baseline for comparison. Our experimental results demonstrate the effectiveness of our method in achieving accurate classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Horizontally partitioned data refers to data divided by instances (rows). In contrast, vertically partitioned data refers to data divided by features (columns).

  2. 2.

    https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/NaiveBayes.html.

  3. 3.

    https://github.com/nayyarzaidi/EBNC.

  4. 4.

    https://www.openml.org/.

  5. 5.

    https://github.com/ptorrijos99/BayesFL.

  6. 6.

    The House Votes 84 database does not have results for 100 clients because it has 435 instances, and 500 are required to perform the 5-cv on each client.

References

  1. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  2. Giaretta, L., Marchioro, T., Markatos, E., Girdzijauskas, S.: Towards a Realistic Decentralized Naive Bayes with Differential Privacy. In: Proceedings of the 20th International Conference on Smart Business Technologies, pp. 98–121 (2023)

    Google Scholar 

  3. Huai, M., Huang, L., Yang, W., Li, L., Qi, M.: Privacy-preserving Naive Bayes classification. In: Proceedings of the 8th International Conference on Knowledge Science, Engineering and Management, pp. 627–638 (2015)

    Google Scholar 

  4. Li, L., Fan, Y., Tse, M., Lin, K.Y.: A review of applications in federated learning. Comput. Ind. Eng. 149, 106854 (2020)

    Article  Google Scholar 

  5. Liu, Y., et al.: Federated Forest. IEEE Trans. Big Data 8(843–854), 3 (2022)

    Google Scholar 

  6. McMahan, B., Moore, E., Ramage, D., Hampson, S., Agüera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pp. 1273–1282 (2017)

    Google Scholar 

  7. Rahman, M.M., Farid, D.M.: Exploring federated learning with Naïve Bayes using AVC information. In: Proceedings of the 14th International Conference on Computing Communication and Networking Technologies, pp. 1–6 (2023)

    Google Scholar 

  8. Roos, T., Wettig, H., Grünwald, P., Myllymäki, P., Tirri, H.: On discriminative Bayesian network classifiers and logistic regression. Mach. Learn. 59, 267–296 (2005)

    Google Scholar 

  9. Rubinstein, D., Hastie, T.J.: Discriminative vs informative learning. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, pp. 49–53 (1997)

    Google Scholar 

  10. Santafé, G., Lozano, J.A., Larrañaga, P.: Discriminative vs. generative learning of bayesian network classifiers. In: Proceedings of the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 453–464 (2007)

    Google Scholar 

  11. Vaidya, J., Kantarcıoğlu, M., Clifton, C.: Privacy-preserving Naïve Bayes classification. VLDB J. 17, 879–898 (2007)

    Article  Google Scholar 

  12. Vaidya, J., Shafiq, B., Basu, A., Hong, Y.: Differentially private Naive Bayes classification. In: Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 571–576 (2013)

    Google Scholar 

  13. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. ACM SIGKDD Explor. Newsl. 15, 49–60 (2013)

    Article  Google Scholar 

  14. Webb, G.I.: Naïve Bayes. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining, pp. 713–714. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8_576

    Chapter  Google Scholar 

  15. Yi, X., Zhang, Y.: Privacy-preserving naive Bayes classification on distributed data via semi-trusted mixers. Inf. Syst. 34, 371–380 (2009)

    Article  Google Scholar 

  16. Zaidi, N.A., Cerquides, J., Carman, M.J., Webb, G.I.: Alleviating naive Bayes attribute independence assumption by attribute weighting. J. Mach. Learn. Res. 14, 1947–1988 (2013)

    MathSciNet  Google Scholar 

  17. Zaidi, N.A., Webb, G.I., Carman, M.J., Petitjean, F., Buntine, W., Hynes, M., De Sterck, H.: Efficient parameter learning of Bayesian network classifiers. Mach. Learn. 106, 1289–1329 (2017)

    Article  MathSciNet  Google Scholar 

  18. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning. Knowl.-Based Syst. 216, 106775 (2021)

    Article  Google Scholar 

  19. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the following projects: TED2021-131291B-I00 (MICIU/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR), SBPLY/21/180225/000062 (Junta de Comunidades de Castilla-La Mancha and ERDF A way of making Europe), PID2022-139293NB-C32 (MICIU/AEI/10.13039/501100011033 and ERDF, EU), FPU21/01074 (MICIU/AEI/10.13039/501100011033 and ESF+); 2022-GRIN-34437 (Universidad de Castilla-La Mancha and ERDF A way of making Europe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Torrijos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torrijos, P., Alfaro, J.C., Gámez, J.A., Puerta, J.M. (2025). Federated Learning with Discriminative Naive Bayes Classifier. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77738-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77737-0

  • Online ISBN: 978-3-031-77738-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics