Monitoring and Scheduling of Semiconductor Failure Analysis Labs | SpringerLink
Skip to main content

Monitoring and Scheduling of Semiconductor Failure Analysis Labs

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2024)

Abstract

Finding non-conformities, such as physical failures causing electrical malfunctioning of a device, in modern semiconductor devices is challenging. Highly qualified employees in a failure analysis (FA) lab typically use sophisticated and expensive tools like scanning electron microscopes to identify and locate such non-conformities. Given the increasing complexity of investigated devices and very limited resources, labs may struggle to deliver analysis results in time.

This paper proposes an approach to optimize the usage of FA lab resources by combining constraint programming with stream reasoning enabling situation-dependent monitoring of the lab’s conditions and schedule maintenance. Evaluation results indicate that our system can significantly improve the tardiness of real-world FA labs, and all its computational tasks can be finished in an average time of 3.6 s, with a maximum of 15.2 s, which is acceptable for the lab’s workflows.

PNRR project FAIR - Future AI Research (PE00000013), Spoke 9 - Green-aware AI, under the NRRP MUR program funded by the “NextGenerationEU”; PNRR project Tech4You “Technologies for climate change adaptation and quality of life improvement”, CUP H23C22000370006, under the NRRP MUR program funded by the “NextGenerationEU”; PRIN project PINPOINT - exPlaInable kNowledge-aware PrOcess INTelligence, CUP H23C22000280006; and Austrian Research Promotion Agency (FFG, Project No. 887931).

E. Mastria and D. Pagliaro—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    DP-sr works according to the event time notion [1] allowing to obtain deterministic, reproducible, and consistent results as computations are independent of both arrival time and order of events.

References

  1. Affetti, L., Tommasini, R., Margara, A., Cugola, G., Valle, E.D.: Defining the execution semantics of stream processing engines. J. Big Data 4(1), 12 (2017)

    Article  Google Scholar 

  2. Bonte, P., et al.: Grounding stream reasoning research. TGDK 2(1), 2:1–2:47 (2024)

    Google Scholar 

  3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  MATH  Google Scholar 

  4. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Computing 45(4), 369–375 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calimeri, F., Manna, M., Mastria, E., Morelli, M.C., Perri, S., Zangari, J.: I-DLV-sr: a stream reasoning system based on I-DLV. TPLP 21(5), 610–628 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Online appendix providing all encodings and additional evaluation results. https://sites.google.com/unical.it/dp-sr/experiments-and-use-cases

  7. Calimeri, F., Mastria, E., Perri, S.: DP-sr: a purely declarative programming framework for stream reasoning (2024). https://sites.google.com/unical.it/dp-sr

  8. Laboccetta, L., Mastria, E., Calimeri, F., Leone, N., Perri, S., Terracina, G.: Towards effective ASP-based stream reasoning: facilitate the reasoning over patterns of events. In: PPDP 2024 (2024). https://doi.org/10.1145/3678232.3678248

  9. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache flink\(^{\rm TM}\): stream and batch processing in a single engine. Bull. IEEE Comput. Soc. Tech. Committee Data Eng. 36(4), 28–38 (2015)

    Google Scholar 

  10. Cunha, M.M., et al.: Dual resource constrained scheduling for quality control laboratories. IFAC-PapersOnLine 52(13), 1421–1426 (2019)

    Article  MATH  Google Scholar 

  11. Danzinger, P., Geibinger, T., Janneau, D., Mischek, F., Musliu, N., Poschalko, C.: A system for automated industrial test laboratory scheduling. ACM Trans. Intell. Syst. Technol. 14(1), 1–27 (2023)

    Article  MATH  Google Scholar 

  12. Francescutto, G., Schekotihin, K., El-Kholany, M.M.S.: Solving a multi-resource partial-ordering flexible variant of the job-shop scheduling problem with hybrid ASP. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 313–328. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_21

    Chapter  MATH  Google Scholar 

  13. Gargeya, V.B., Deane, R.H.: Scheduling research in multiple resource constrained job shops: a review and critique. Int. J. Prod. Res. 34(8), 2077–2097 (1996)

    Article  MATH  Google Scholar 

  14. Itoh, T.D., Horinouchi, T., Uchida, H., Takahashi, K., Ozaki, H.: Optimal scheduling for laboratory automation of life science experiments with time constraints. SLAS Technol. 26(6), 650–659 (2021)

    Article  MATH  Google Scholar 

  15. Pagliaro, D., Pleschberger, M., Pfeiler, O., Freislich, T., Schekotihin, K.: Working time prediction and workflow mining at failure analysis. In: ISTFA, pp. 121–130 (2023)

    Google Scholar 

  16. Pagliaro, D., Pleschberger, M., Schekotihin, K.: Public available data set of process flows from internal physical inspections in the failure analysis laboratory. Zenodo (2024)

    Google Scholar 

  17. Cplex, IBM ILOG: V12.1: User’s Manual for CPLEX. International Business Machines Corporation (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Pagliaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mastria, E., Pagliaro, D., Calimeri, F., Perri, S., Pleschberger, M., Schekotihin, K. (2025). Monitoring and Scheduling of Semiconductor Failure Analysis Labs. In: Dodaro, C., Gupta, G., Martinez, M.V. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2024. Lecture Notes in Computer Science(), vol 15245. Springer, Cham. https://doi.org/10.1007/978-3-031-74209-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74209-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74208-8

  • Online ISBN: 978-3-031-74209-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics