Abstract
Adversarial risk analysis (ARA) provides decision-theoretic arguments to manage uncertainty in competitive decision-making environments. This paper introduces efficient algorithmic approaches to approximate ARA solutions in multi-stage games, covering both sequential and simultaneous settings, through augmented probability simulation. Two examples concerning international piracy and air combat illustrate the proposed methodology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kadane, J.B., Larkey, P.D.: Subjective probability and the theory of games. Manag. Sci. 28(2), 113–120 (1982)
Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Cambridge, MA (1982)
Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis: The Science and Art of Collaborative Decision Making. Harvard University Press, Cambridge, MA (2002)
Hargreaves-Heap, S., Varoufakis, Y.: Game Theory: A Critical Introduction. Routledge, New York (2004)
Angeletos, G.M., Lian, C.: Forward guidance without common knowledge. Am. Econ. Rev. 108(9), 2477–2512 (2018)
Banks, D., Gallego, V., Naveiro, R., Insua, D.R.: Adversarial risk analysis: an overview. Wiley Interdiscip. Rev. Comput. Stat. 14(1), e1530 (2022)
Gil, C., Parra-Arnau, J.: An adversarial-risk-analysis approach to counterterrorist online surveillance. Sens. 19(3) (2019)
Roponen, J., Salo, A.: Adversarial risk analysis for enhancing combat simulation models. J. Mil. Stud. 6(2), 82–103 (2015)
Insua, D.R., Naveiro, R., Gallego, V., Poulos, J.: Adversarial machine learning: Bayesian perspectives. J. Am. Stat. Assoc. 118(543), 2195–2206 (2023)
Ekin, T., Naveiro, R., Insua, D.R., Torres-Barrán, A.: Augmented probability simulation methods for sequential games. Eur. J. Oper. Res. 306(1), 418–430 (2023)
Bielza, C., Müller, P., Insua, D.R.: Decision analysis by augmented probability simulation. Manag. Sci. 45(7), 995–1007 (1999)
Stahl, D.O., Wilson, P.W.: On players’ models of other players: theory and experimental evidence. Games Econ. Behav. 10(1), 218–254 (1995)
Stahl, D.O., Wilson, P.W.: Experimental evidence on players’ models of other players. J. Econ. Behav. Organ. 25(3), 309–327 (1994)
Chacon, J.: The modal age of statistics. Int. Stat. Rev. 88(1), 122–141 (2020)
French, S., Insua, D.R.: Statistical Decision Theory. Wiley, Hoboken (2000)
Roberts, G.O., Smith, A.F.: Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stoch. process. appl. 49(2), 207–216 (1994)
Virtanen, K., Karelahti, J., Raivio, T.: Modeling air combat by a moving horizon influence diagram game. J. Guid. Control Dyn. 29(5), 1080–1091 (2006)
Gallego, V., Naveiro, R., Insua, D.R.: Reinforcement learning under threats. In: Proc. AAAI Conf. Artif. Intell. vol. 33, pp. 9939–9940 (2019)
Müller, P., Sansó, B., De Iorio, M.: Optimal Bayesian design by inhomogeneous Markov chain simulation. J. Am. Stat. Assoc. 99(467), 788–798 (2004)
Sevillano, J.C., Insua, D.R., Rios, J.: Adversarial risk analysis: the Somali pirates case. Decis. Anal. 9(2), 86–95 (2012)
Acknowledgments
EU’s Horizon 2020 project No. 101021797(STARLIGHT), the AMALFI FBBVA project, AFOSR award FA-9550-21-1-0239, AFOSR-EOARD award FA8655-21-1-7042, and the Spanish Ministry of Science program PID2021-124662OB-I00. DRI supported by the AXA-ICMAT Chair. JMC supported by a fellowship from “la Caixa” Foundation (ID100010434), whose code is LCF/BQ/DI21/11860063.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
No conflict of interests to be declared.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland
About this paper
Cite this paper
Camacho, J.M., Naveiro, R., Ríos Insua, D. (2025). Algorithmic Decision Analysis for Multi-stage Games with Incomplete Information. In: Freeman, R., Mattei, N. (eds) Algorithmic Decision Theory. ADT 2024. Lecture Notes in Computer Science(), vol 15248. Springer, Cham. https://doi.org/10.1007/978-3-031-73903-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-73903-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73902-6
Online ISBN: 978-3-031-73903-3
eBook Packages: Computer ScienceComputer Science (R0)