Abstract
To make a choice in the presence of multiple criteria, we generally use an aggregation function which determines, for each alternative, the balance of its strengths and weaknesses and its overall evaluation. The aggregation function uses weights to adapt the model to the decision-maker’s value system, by specifying the importance of the criteria and possibly their interactions. In this paper, we propose a noise-tolerant active learning method for these parameters, which not only effectively reduces the indeterminacy of the weights to identify an optimal or near-optimal decision among a given set of alternatives, but also simultaneously determines a predictive model of preferences capable of making relevant choices for the decision-maker on new instances. These outcomes are achieved by leveraging a general disagreement-based active learning approach that is theoretically guaranteed to be tolerant to noisy answers. The proposed method applies to various weighted aggregation functions, linear or not, classically used in decision theory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adam, L., Destercke, S.: Handling inconsistency in (numerical) preferences using possibility theory. Inf. Fusion 103, 102089 (2024)
Balcan, M.F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 65–72 (2006)
Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems. Artif. Intell. 246, 152–180 (2017)
Bourdache, N., Perny, P., Spanjaard, O.: Incremental elicitation of rank-dependent aggregation functions based on Bayesian linear regression. In: Proceedings of IJCAI-19, pp. 2023–2029 (2019)
Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based optimization and utility elicitation using the minimax decision criterion. Artif. Intell. 170(8–9), 686–713 (2006)
Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: AAAI/IAAI, pp. 363–369 (2000)
Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Soc. Sci. 17(3), 263–283 (1989)
Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15, 201–221 (1994)
Dasgupta, S.: Two faces of active learning. Theoret. Comput. Sci. 412(19), 1767–1781 (2011)
Dasgupta, S., Hsu, D.J., Monteleoni, C.: A general agnostic active learning algorithm. Adv. Neural Inf. Process. Syst. 20 (2007)
Domshlak, C., Joachims, T.: Unstructuring user preferences: efficient non-parametric utility revelation. arXiv preprint arXiv:1207.1390 (2012)
Feldman, V., Guruswami, V., Raghavendra, P., Wu, Y.: Agnostic learning of monomials by halfspaces is hard. SIAM J. Comput. 41(6), 1558–1590 (2012)
Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions, vol. 127. Cambridge University Press, Cambridge (2009)
Grabisch, M., et al.: Set Functions, Games and Capacities in Decision Making, vol. 46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30690-2
Hanneke, S., et al.: Theory of disagreement-based active learning. Found. Trends® Mach. Learn. 7(2-3), 131–309 (2014)
Herin, M., Perny, P., Sokolovska, N.: Learning preference models with sparse interactions of criteria. In: Proceedings of the of IJCAI (2023)
Pourkhajouei, S., Toffano, F., Viappiani, P., Wilson, N.: An efficient non-Bayesian approach for interactive preference elicitation under noisy preference models. In: Bouraoui, Z., Vesic, S. (eds.) ECSQARU 2023. LNCS, vol. 14294, pp. 308–321. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45608-4_23
Steuer, R.E.: Multiple Criteria Optimization. Theory, Computation, and Application (1986)
Vanderpooten, D., Vincke, P.: Description and analysis of some representative interactive multicriteria procedures. In: Models and Methods in Multiple Criteria Decision Making, pp. 1221–1238. Elsevier (1989)
Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret decision criterion. In: IJCAI, vol. 3, pp. 309–316 (2003)
White, C.C., Sage, A.P., Dozono, S.: A model of multiattribute decisionmaking and trade-off weight determination under uncertainty. IEEE Trans. Syst. Man Cybern. 2, 223–229 (1984)
Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. Oper.-Res.-Spektr. 8(2), 73–87 (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland
About this paper
Cite this paper
Herin, M., Perny, P., Sokolovska, N. (2025). Noise-Tolerant Active Preference Learning for Multicriteria Choice Problems. In: Freeman, R., Mattei, N. (eds) Algorithmic Decision Theory. ADT 2024. Lecture Notes in Computer Science(), vol 15248. Springer, Cham. https://doi.org/10.1007/978-3-031-73903-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-73903-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73902-6
Online ISBN: 978-3-031-73903-3
eBook Packages: Computer ScienceComputer Science (R0)