Noise-Tolerant Active Preference Learning for Multicriteria Choice Problems | SpringerLink
Skip to main content

Noise-Tolerant Active Preference Learning for Multicriteria Choice Problems

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15248))

Included in the following conference series:

  • 84 Accesses

Abstract

To make a choice in the presence of multiple criteria, we generally use an aggregation function which determines, for each alternative, the balance of its strengths and weaknesses and its overall evaluation. The aggregation function uses weights to adapt the model to the decision-maker’s value system, by specifying the importance of the criteria and possibly their interactions. In this paper, we propose a noise-tolerant active learning method for these parameters, which not only effectively reduces the indeterminacy of the weights to identify an optimal or near-optimal decision among a given set of alternatives, but also simultaneously determines a predictive model of preferences capable of making relevant choices for the decision-maker on new instances. These outcomes are achieved by leveraging a general disagreement-based active learning approach that is theoretically guaranteed to be tolerant to noisy answers. The proposed method applies to various weighted aggregation functions, linear or not, classically used in decision theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adam, L., Destercke, S.: Handling inconsistency in (numerical) preferences using possibility theory. Inf. Fusion 103, 102089 (2024)

    Article  Google Scholar 

  2. Balcan, M.F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 65–72 (2006)

    Google Scholar 

  3. Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems. Artif. Intell. 246, 152–180 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bourdache, N., Perny, P., Spanjaard, O.: Incremental elicitation of rank-dependent aggregation functions based on Bayesian linear regression. In: Proceedings of IJCAI-19, pp. 2023–2029 (2019)

    Google Scholar 

  5. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based optimization and utility elicitation using the minimax decision criterion. Artif. Intell. 170(8–9), 686–713 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: AAAI/IAAI, pp. 363–369 (2000)

    Google Scholar 

  7. Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Soc. Sci. 17(3), 263–283 (1989)

    Article  Google Scholar 

  8. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15, 201–221 (1994)

    Article  Google Scholar 

  9. Dasgupta, S.: Two faces of active learning. Theoret. Comput. Sci. 412(19), 1767–1781 (2011)

    Article  MathSciNet  Google Scholar 

  10. Dasgupta, S., Hsu, D.J., Monteleoni, C.: A general agnostic active learning algorithm. Adv. Neural Inf. Process. Syst. 20 (2007)

    Google Scholar 

  11. Domshlak, C., Joachims, T.: Unstructuring user preferences: efficient non-parametric utility revelation. arXiv preprint arXiv:1207.1390 (2012)

  12. Feldman, V., Guruswami, V., Raghavendra, P., Wu, Y.: Agnostic learning of monomials by halfspaces is hard. SIAM J. Comput. 41(6), 1558–1590 (2012)

    Article  MathSciNet  Google Scholar 

  13. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions, vol. 127. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  14. Grabisch, M., et al.: Set Functions, Games and Capacities in Decision Making, vol. 46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30690-2

    Book  Google Scholar 

  15. Hanneke, S., et al.: Theory of disagreement-based active learning. Found. Trends® Mach. Learn. 7(2-3), 131–309 (2014)

    Google Scholar 

  16. Herin, M., Perny, P., Sokolovska, N.: Learning preference models with sparse interactions of criteria. In: Proceedings of the of IJCAI (2023)

    Google Scholar 

  17. Pourkhajouei, S., Toffano, F., Viappiani, P., Wilson, N.: An efficient non-Bayesian approach for interactive preference elicitation under noisy preference models. In: Bouraoui, Z., Vesic, S. (eds.) ECSQARU 2023. LNCS, vol. 14294, pp. 308–321. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45608-4_23

    Chapter  Google Scholar 

  18. Steuer, R.E.: Multiple Criteria Optimization. Theory, Computation, and Application (1986)

    Google Scholar 

  19. Vanderpooten, D., Vincke, P.: Description and analysis of some representative interactive multicriteria procedures. In: Models and Methods in Multiple Criteria Decision Making, pp. 1221–1238. Elsevier (1989)

    Google Scholar 

  20. Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret decision criterion. In: IJCAI, vol. 3, pp. 309–316 (2003)

    Google Scholar 

  21. White, C.C., Sage, A.P., Dozono, S.: A model of multiattribute decisionmaking and trade-off weight determination under uncertainty. IEEE Trans. Syst. Man Cybern. 2, 223–229 (1984)

    Article  MathSciNet  Google Scholar 

  22. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. Oper.-Res.-Spektr. 8(2), 73–87 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Herin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herin, M., Perny, P., Sokolovska, N. (2025). Noise-Tolerant Active Preference Learning for Multicriteria Choice Problems. In: Freeman, R., Mattei, N. (eds) Algorithmic Decision Theory. ADT 2024. Lecture Notes in Computer Science(), vol 15248. Springer, Cham. https://doi.org/10.1007/978-3-031-73903-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73903-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73902-6

  • Online ISBN: 978-3-031-73903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics