Abstract
Contemporary color difference (CD) measures for photographic images typically operate by comparing co-located pixels, patches in a “perceptually uniform” color space, or features in a learned latent space. Consequently, these measures inadequately capture the human color perception of misaligned image pairs, which are prevalent in digital photography (e.g., the same scene captured by different smartphones). In this paper, we describe a perceptual CD measure based on the multiscale sliced Wasserstein distance, which facilitates efficient comparisons between non-local patches of similar color and structure. This aligns with the modern understanding of color perception, where color and structure are inextricably interdependent as a unitary process of perceptual organization. Meanwhile, our method is easy to implement and training-free. Experimental results indicate that our CD measure performs favorably in assessing CDs in photographic images, and consistently surpasses competing models in the presence of image misalignment. Additionally, we empirically verify that our measure functions as a metric in the mathematical sense, and show its promise as a loss function for image and video color transfer tasks. The code is available at https://github.com/real-hjq/MS-SWD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Histogram intersection measures the similarity between two normalized histograms by summing the minimum values of corresponding bins.
- 2.
This corresponds to solving a large-scale linear programming problem, which is painfully slow.
References
Alakuijala, J., Obryk, R., Stoliarchuk, O., Szabadka, Z., Vandevenne, L., Wassenberg, J.: Guetzli: perceptually guided JPEG encoder. arXiv preprint arXiv:1703.04421 (2017)
Albertazzi, L., Van Tonder, G.J., Vishwanath, D.: Perception Beyond Inference: The Information Content of Visual Processes. MIT Press, Cambridge (2011)
Andersson, P., Nilsson, J., Akenine-Möller, T., Oskarsson, M., Åström, K., Fairchild, M.D.: FLIP: a difference evaluator for alternating images. ACM Comput. Graph. Interact. Techn. 3(2), 1–23 (2020)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)
Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 1–11 (2009)
Ben-Shahar, O., Zucker, S.W.: Hue geometry and horizontal connections. Neural Netw. 17(5–6), 753–771 (2004)
Bhardwaj, S., Fischer, I., Ballé, J., Chinen, T.: An unsupervised information-theoretic perceptual quality metric. In: International Conference on Neural Information Processing Systems, pp. 1–12 (2020)
Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)
Chen, H., Wang, Z., Yang, Y., Sun, Q., Ma, K.: Learning a deep color difference metric for photographic images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 22242–22251 (2023)
Chou, C.H., Liu, K.C.: A fidelity metric for assessing visual quality of color images. In: International Conference on Computer Communications and Networks, pp. 1154–1159 (2007)
Choudhury, A., Wanat, R., Pytlarz, J., Daly, S.: Image quality evaluation for high dynamic range and wide color gamut applications using visual spatial processing of color differences. Color Res. Appl. 46(1), 46–64 (2021)
Clarke, F.J.J., McDonald, R., Rigg, B.: Modification to the JPC79 colour-difference formula. J. Soc. Dyers Colour. 100(4), 128–132 (1984)
Deshpande, I., Zhang, Z., Schwing, A.: Generative modeling using the sliced Wasserstein distance. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3483–3491 (2018)
Ding, K., Liu, Y., Zou, X., Wang, S., Ma, K.: Locally adaptive structure and texture similarity for image quality assessment. In: ACM International Conference on Multimedia, pp. 2483–2491 (2021)
Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Comparison of full-reference image quality models for optimization of image processing systems. Int. J. Comput. Vision 129(4), 1258–1281 (2021)
Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying structure and texture similarity. IEEE Trans. Pattern Anal. Mach. Intell. 44(5), 2567–2581 (2022)
Elnekave, A., Weiss, Y.: Generating natural images with direct patch distributions matching. In: European Conference on Computer Vision, pp. 544–560. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19790-1_33
Fairchild, M.D.: Color Appearance Models. John Wiley & Sons, Ltd., Hoboken (2013)
Garcia, P.A., Huertas, R., Melgosa, M., Cui, G.: Measurement of the relationship between perceived and computed color differences. J. Opt. Soc. Am. A 24(7), 1823–1829 (2007)
Ghildyal, A., Liu, F.: Shift-tolerant perceptual similarity metric. In: European Conference on Computer Vision, pp. 91—107. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19797-0_6
Hong, G., Luo, M.R.: New algorithm for calculating perceived colour difference of images. Imaging Sci. J. 54(2), 86–91 (2006)
Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger Publishers, Westport (1979)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations, pp. 1–26 (2018)
Kolkin, N., Salavon, J., Shakhnarovich, G.: Style transfer by relaxed optimal transport and self-similarity. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10051–10060 (2019)
Lee, S.M., Xin, J.H., Westland, S.: Evaluation of image similarity by histogram intersection. Color Res. Appl. 30(4), 265–274 (2005)
Lennie, P.: Color coding in the cortex. In: Color Vision: From Genes to Perception, pp. 235–247 (1999)
Li, C., et al.: A revision of CIECAM02 and its CAT and UCS. In: Color and Imaging Conference, pp. 208–212 (2016)
Liao, X., Chen, B., Zhu, H., Wang, S., Zhou, M., Kwong, S.: DeepWSD: projecting degradations in perceptual space to Wasserstein distance in deep feature space. In: ACM International Conference on Multimedia, pp. 970–978 (2022)
Luo, M.R., Cui, G., Rigg, B.: The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 26(5), 340–350 (2001)
Luo, M.R., Li, C.: CIECAM02 and its recent developments. In: Advanced Color Image Processing and Analysis, pp. 19–58 (2013)
Mahy, M., Van Eycken, L., Oosterlinck, A.: Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Res. Appl. 19(2), 105–121 (1994)
McDonald, R., Smith, K.J.: CIE94-A new colour-difference formula. J. Soc. Dyers Colour. 111(12), 376–379 (1995)
Moroney, N., Fairchild, M.D., Hunt, R.W., Li, C., Luo, M.R., Newman, T.: The CIECAM02 color appearance model. In: Color and Imaging Conference, pp. 23–27 (2002)
Ortiz-Jaramillo, B., Kumcu, A., Platisa, L., Philips, W.: Evaluation of color differences in natural scene color images. Signal Process. Image Commun. 71, 128–137 (2019)
Ouni, S., Zagrouba, E., Chambah, M., Herbin, M.: A new spatial colour metric for perceptual comparison. In: International Conference on E-Systems Engineering, Communication and Information, pp. 413–428 (2008)
Pitie, F., Kokaram, A.C., Dahyot, R.: N-dimensional probability density function transfer and its application to color transfer. In: IEEE International Conference on Computer Vision, pp. 1434–1439 (2005)
Prashnani, E., Cai, H., Mostofi, Y., Sen, P.: PieAPP: perceptual image-error assessment through pairwise preference. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1808–1817 (2018)
Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 435–446 (2012)
Robertson, A.R.: The CIE 1976 color-difference formulae. Color Res. Appl. 2(1), 7–11 (1977)
Santos, C.N.d., Mroueh, Y., Padhi, I., Dognin, P.: Learning implicit generative models by matching perceptual features. In: IEEE International Conference on Computer Vision, pp. 4461–4470 (2019)
Shaham, T.R., Dekel, T., Michaeli, T.: SinGAN: learning a generative model from a single natural image. In: IEEE International Conference on Computer Vision, pp. 4570–4580 (2019)
Shapley, R., Hawken, M.J.: Color in the cortex: single-and double-opponent cells. Vision. Res. 51(7), 701–717 (2011)
Sharma, G., Bala, R.: Digital Color Imaging Handbook. CRC Press, Boca Raton (2017)
Shen, H.C., Wong, A.K.: Generalized texture representation and metric. Comput. Vision Graph. Image Process. 23(2), 187–206 (1983)
Shevell, S.K., Kingdom, F.A.A.: Color in complex scenes. Ann. Rev. Psychol. 59, 143–166 (2008)
Shocher, A., Bagon, S., Isola, P., Irani, M.: InGAN: capturing and retargeting the “DNA” of a natural image. In: IEEE International Conference on Computer Vision, pp. 4492–4501 (2019)
Simakov, D., Caspi, Y., Shechtman, E., Irani, M.: Summarizing visual data using bidirectional similarity. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: IEEE International Conference on Image Processing, pp. 444–447 (1995)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, pp. 1–14 (2015)
VQEG: Final report from the Video Quality Experts Group on the validation of objective models of video quality assessment (2000). http://www.vqeg.org
Wang, Z., et al.: CD-iNet: deep invertible network for perceptual image color difference measurement. Int. J. Comput. Vision (2024)
Wang, Z., et al.: Measuring perceptual color differences of smartphone photography. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 10114–10128 (2023)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Asilomar Conference on Signals, Systems & Computers, pp. 1398–1402 (2003)
Xu, K., et al.: A database of visual color differences of modern smartphone photography. In: IEEE International Conference on Image Processing, pp. 3758–3762 (2022)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhang, X., Wandell, B.A.: A spatial extension of CIELAB for digital color-image reproduction. J. Soc. Inf. Display 5(1), 61–63 (1997)
Acknowledgements
This work was supported in part by the National Key Research and Development Program of China (2023YFE0210700), the Hong Kong ITC Innovation and Technology Fund (9440390), the National Natural Science Foundation of China (62071407, 62375233, 62301323, 62441203, 62302423, and 62311530101), and the Shenzhen Natural Science Foundation (20231128191435002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
He, J. et al. (2025). Multiscale Sliced Wasserstein Distances as Perceptual Color Difference Measures. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15111. Springer, Cham. https://doi.org/10.1007/978-3-031-73668-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-73668-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73667-4
Online ISBN: 978-3-031-73668-1
eBook Packages: Computer ScienceComputer Science (R0)