A Multidimensional Taxonomy for Recent Trends in Explainable Artificial Intelligence | SpringerLink
Skip to main content

A Multidimensional Taxonomy for Recent Trends in Explainable Artificial Intelligence

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2024)

Abstract

With the pervasive integration of Artificial Intelligence (AI) into various facets of society, concerns regarding its transparency and interpretability have gained prominence, particularly in critical or citizen-facing applications. The field of Explainable Artificial Intelligence (XAI) has witnessed rapid growth in response to these concerns, with recent research endeavors focusing on elucidating the inner workings of AI systems. We present a bibliometric study encompassing recent developments in XAI since 2020. We identify seven distinct areas of application where XAI methodologies have been applied. Furthermore, we propose a multidimensional taxonomy that categorizes these approaches and applications, aiming to contribute to the ongoing efforts towards the standardization and uniformization of XAI practices. By shedding light on the current landscape of research and offering a structured taxonomy for analysis, we expose under and over-explored techniques, and encourage the employment and development of diversified approaches for XAI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    tinyurl.com/google-photos-gorilla-tag.

  2. 2.

    www.ted.com/talks/joy_buolamwini_how_i_m_fighting_bias_in_algorithms.

  3. 3.

    tinyurl.com/hiring-algorithms-bias.

  4. 4.

    openai.com/index/faulty-reward-functions/.

  5. 5.

    tinyurl.com/cambridge-analytica-scandal.

  6. 6.

    gdpr.eu/.

  7. 7.

    artificialintelligenceact.eu/.

  8. 8.

    www.scopus.com/home.uri.

  9. 9.

    www.vosviewer.com/.

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Bastani, O., Kim, C., Bastani, H.: Interpretability via Model Extraction. arXiv preprint arXiv:1706.09773 (2017)

  3. Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  4. Chowdhury, S., Joel-Edgar, S., Dey, P.K., Bhattacharya, S., Kharlamov, A.: Embedding transparency in artificial intelligence machine learning models: managerial implications on predicting and explaining employee turnover. Int. J. Hum. Res. Manag. 34(14), 2732–2764 (2023)

    Google Scholar 

  5. Dahal, A., Lombardo, L.: Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling. Comput. Geosci. 176, 105364 (2023)

    Article  Google Scholar 

  6. Dong, J., Chen, S., Miralinaghi, M., Chen, T., Li, P., Labi, S.: Why did the AI make that decision? Towards an explainable artificial intelligence (XAI) for autonomous driving systems. Transp. Res. Part C Emerg. Technol. 156, 104358 (2023)

    Article  Google Scholar 

  7. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey. In: 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0210–0215. IEEE (2018)

    Google Scholar 

  8. Dwivedi, R., et al.: Explainable AI (XAI): core ideas, techniques, and solutions. ACM Comput. Surv. 55(9), 1–33 (2023)

    Article  Google Scholar 

  9. DAngelo, G., Della-Morte, D., Pastore, D., Donadel, G., De Stefano, A., Palmieri, F.: Identifying patterns in multiple biomarkers to diagnose diabetic foot using an explainable genetic programming-based approach. Future Gener. Comput. Syst. 140, 138–150 (2023)

    Google Scholar 

  10. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    MathSciNet  Google Scholar 

  11. Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. Ann. Appl. Stat. 916–954 (2008)

    Google Scholar 

  12. Futia, G., Vetrò, A.: On the integration of knowledge graphs into deep learning models for a more comprehensible AI three challenges for future research. Information 11(2), 122 (2020)

    Article  Google Scholar 

  13. Gurumoorthy, K.S., Dhurandhar, A., Cecchi, G., Aggarwal, C.: Efficient data representation by selecting prototypes with importance weights. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 260–269. IEEE (2019)

    Google Scholar 

  14. Hickling, T., Aouf, N., Spencer, P.: Robust adversarial attacks detection based on explainable deep reinforcement learning for UAV guidance and planning. IEEE Trans. Intell. Veh. (2023)

    Google Scholar 

  15. Inácio, M., Wick-pedro, G., Gonçalo Oliveira, H.: What do humor classifiers learn? An attempt to explain humor recognition models. In: Procs of 7th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage. Social Sciences, Humanities and Literature, pp. 88–98. ACL, Dubrovnik, Croatia (2023)

    Google Scholar 

  16. Islam, S.R., Eberle, W., Ghafoor, S.K., Ahmed, M.: Explainable artificial intelligence approaches: a survey. arXiv preprint arXiv:2101.09429 (2021)

  17. Keshk, M., Koroniotis, N., Pham, N., Moustafa, N., Turnbull, B., Zomaya, A.Y.: An explainable deep learning-enabled intrusion detection framework in IoT networks. Inf. Sci. 639, 119000 (2023)

    Article  Google Scholar 

  18. Krüger, J.G.C., de Souza Britto Jr., A., Barddal, J.P.: An explainable machine learning approach for student dropout prediction. Expert Syst. Appl. 233, 120933 (2023)

    Google Scholar 

  19. Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 1350–1371 (2015)

    Google Scholar 

  20. Lomazzi, L., Fabiano, S., Parziale, M., Giglio, M., Cadini, F.: On the explainability of convolutional neural networks processing ultrasonic guided waves for damage diagnosis. Mech. Syst. Signal Process. 183, 109642 (2023)

    Article  Google Scholar 

  21. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  22. Molnar, C.: Interpretable Machine Learning. Lulu. com, 2nd edn. (2020). https://christophm.github.io/interpretable-ml-book/

  23. Narang, S., Raffel, C., Lee, K., Roberts, A., Fiedel, N., Malkan, K.: WT5?! training text-to-text models to explain their predictions. arXiv preprint arXiv:2004.14546 (2020)

  24. O’Neil, C.: Weapons of math destruction: how big data increases inequality and threatens democracy. Crown (2017)

    Google Scholar 

  25. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  26. Shapley, L.S.: A Value for n-Person Games, pp. 307–318. Princeton University Press, Princeton (1953). https://doi.org/10.1515/9781400881970-018

  27. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: Proceedings of International Conference on Learning Representations (ICLR). ICLR (2014)

    Google Scholar 

  28. Van Eck, N.J., Waltman, L.: Text mining and visualization using vosviewer. arXiv preprint arXiv:1109.2058 (2011)

  29. Wang, J., et al.: When, where and how does it fail? A spatial-temporal visual analytics approach for interpretable object detection in autonomous driving. IEEE Trans. Visual Comput. Graphics 29(12), 5033–5049 (2022)

    Article  Google Scholar 

  30. Wang, Y., Wang, Z., Kang, X., Luo, Y.: A novel interpretable model ensemble multivariate fast iterative filtering and temporal fusion transform for carbon price forecasting. Energy Sci. Eng. 11(3), 1148–1179 (2023)

    Article  Google Scholar 

  31. Xing, J., Nagata, T., Zou, X., Neftci, E., Krichmar, J.L.: Achieving efficient interpretability of reinforcement learning via policy distillation and selective input gradient regularization. Neural Netw. 161, 228–241 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carvalho, I., Gonçalo Oliveira, H., Silva, C. (2025). A Multidimensional Taxonomy for Recent Trends in Explainable Artificial Intelligence. In: Santos, M.F., Machado, J., Novais, P., Cortez, P., Moreira, P.M. (eds) Progress in Artificial Intelligence. EPIA 2024. Lecture Notes in Computer Science(), vol 14968. Springer, Cham. https://doi.org/10.1007/978-3-031-73500-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73500-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73499-1

  • Online ISBN: 978-3-031-73500-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics