Data Alchemy: Mitigating Cross-Site Model Variability Through Test Time Data Calibration | SpringerLink
Skip to main content

Data Alchemy: Mitigating Cross-Site Model Variability Through Test Time Data Calibration

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Abstract

Deploying deep learning-based imaging tools across various clinical sites poses significant challenges due to inherent domain shifts and regulatory hurdles associated with site-specific fine-tuning. For histopathology, stain normalization techniques can mitigate discrepancies, but they often fall short of eliminating inter-site variations. Therefore, we present Data Alchemy, an explainable stain normalization method combined with test time data calibration via a template learning framework to overcome barriers in cross-site analysis. Data Alchemy handles shifts inherent to multi-site data and minimizes them without needing to change the weights of the normalization or classifier networks. Our approach extends to unseen sites in various clinical settings where data domain discrepancies are unknown. Extensive experiments highlight the efficacy of our framework in tumor classification in hematoxylin and eosin-stained patches. Our explainable normalization method boosts classification tasks’ area under the precision-recall curve (AUPR) by 0.165, 0.545 to 0.710. Additionally, Data Alchemy further reduces the multisite classification domain gap, by improving the 0.710 AUPR an additional 0.142, elevating classification performance further to 0.852, from 0.545. Our Data Alchemy framework can popularize precision medicine with minimal operational overhead by allowing for the seamless integration of pre-trained deep learning-based clinical tools across multiple sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anaya-Isaza, A., Mera-Jiménez, L., Zequera-Diaz, M.: An overview of deep learning in medical imaging. Inform. Med. Unlock. 26, 100723 (2021)

    Google Scholar 

  2. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Google Scholar 

  3. Cheng, J.Y., Abel, J.T., Balis, U.G., McClintock, D.S., Pantanowitz, L.: Challenges in the development, deployment, and regulation of artificial intelligence in anatomic pathology. Am. J. Pathol. 191(10), 1684–1692 (2021)

    Google Scholar 

  4. Center for devices and radiological health, US FDA, artificial intelligence and machine learning (AI/ml)-enabled medical device, December 2023. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices

  5. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423 (2016). https://doi.org/10.1109/CVPR.2016.265

  6. Haub, P., Meckel, T.: A model based survey of colour deconvolution in diagnostic brightfield microscopy: error estimation and spectral consideration. Sci. Rep. 5, 12096 (2015). https://doi.org/10.1038/srep12096

  7. He, M., Li, Z., Liu, C., Shi, D., Tan, Z.: Deployment of artificial intelligence in real-world practice: opportunity and challenge. Asia-Pacific J. Ophthalmol. 9(4), 299–307 (2020)

    Google Scholar 

  8. Hoque, M.Z., Keskinarkaus, A., Nyberg, P., Seppänen, T.: Stain normalization methods for histopathology image analysis: a comprehensive review and experimental comparison. Inf. Fusion 102, 101997 (2024). https://doi.org/10.1016/j.inffus.2023.101997

  9. Hossain, M.: Whitening and coloring transformations for multivariate Gaussian data. In: A Selecture Partly Based on the ECE662 Spring (2014)

    Google Scholar 

  10. Kang, H., et al.: Stainnet: a fast and robust stain normalization network. Front. Med. 8 (2021). https://doi.org/10.3389/fmed.2021.746307

  11. Kanopoulos, N., Vasanthavada, N., Baker, R.: Design of an image edge detection filter using the sobel operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988). https://doi.org/10.1109/4.996

  12. Laves, M.H., Ihler, S., Fast, J.F., Kahrs, L.A., Ortmaier, T.: Well-calibrated regression uncertainty in medical imaging with deep learning. In: Medical Imaging with Deep Learning, pp. 393–412. PMLR (2020)

    Google Scholar 

  13. Li, Y., Ping, W.: Cancer metastasis detection with neural conditional random field. In: Medical Imaging with Deep Learning (2018)

    Google Scholar 

  14. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  15. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110 (2009). https://doi.org/10.1109/ISBI.2009.5193250

  16. Parida, A., Jiang, Z., Packer, R.J., Avery, R.A., Anwar, S.M., Linguraru, M.G.: Quantitative metrics for benchmarking medical image harmonization. In: 2024 IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2024). https://doi.org/10.1109/ISBI56570.2024.10635289

  17. Rabinovich, A., Agarwal, S., Laris, C., Price, J., Belongie, S.: Unsupervised color decomposition of histologically stained tissue samples. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16. MIT Press (2003)

    Google Scholar 

  18. Rajaraman, S., Ganesan, P., Antani, S.: Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks. PLoS ONE 17(1), e0262838 (2022)

    Google Scholar 

  19. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001). https://doi.org/10.1109/38.946629

  20. Runz, M., Rusche, D., Schmidt, S., Weihrauch, M., Hesser, J., Weis, C.A.: Normalization of he-stained histological images using cycle consistent generative adversarial networks. Diagnost. Pathol. 16, 71 (2021). https://doi.org/10.1186/s13000-021-01126-y

  21. Sahiner, B., et al.: Deep learning in medical imaging and radiation therapy. Med. Phys. 46(1), e1–e36 (2019)

    Google Scholar 

  22. Salvi, M., Acharya, U.R., Molinari, F., Meiburger, K.M.: The impact of pre- and post-image processing techniques on deep learning frameworks: a comprehensive review for digital pathology image analysis. Comput. Biol. Med. 128, 104129 (2021)

    Google Scholar 

  23. Salvi, M., et al.: Impact of stain normalization on pathologist assessment of prostate cancer: a comparative study. Cancers 15(5), 1503 (2023). https://doi.org/10.3390/cancers15051503

  24. Setiadi, D.R.I.M.: PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimedia Tools Appl. 80(6), 8423–8444 (2021)

    Google Scholar 

  25. Shaban, M.T., Baur, C., Navab, N., Albarqouni, S.: Staingan: stain style transfer for digital histological images. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 953–956. IEEE (2019)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  27. Tellez, D., et al.: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019). https://api.semanticscholar.org/CorpusID:62841444

  28. Voon, W., et al.: Evaluating the effectiveness of stain normalization techniques in automated grading of invasive ductal carcinoma histopathological images. Sci. Reports 13, 20518 (2023).https://doi.org/10.1038/s41598-023-46619-6

  29. Wagner, S.J., et al.: Structure-preserving multi-domain stain color augmentation using style-transfer with disentangled representations. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 257–266. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_25

  30. Zheng, Y., et al.: Histopathological whole slide image analysis using context-based CBIR. IEEE Trans. Med. Imaging 37(7), 1641–1652 (2018). https://doi.org/10.1109/TMI.2018.2796130

Download references

Acknowledgements

This work was supported by the National Cancer Institute award UG3CA236536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius George Linguraru .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4250 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parida, A. et al. (2025). Data Alchemy: Mitigating Cross-Site Model Variability Through Test Time Data Calibration. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15242. Springer, Cham. https://doi.org/10.1007/978-3-031-73290-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73290-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73292-8

  • Online ISBN: 978-3-031-73290-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics