Robust Box Prompt Based SAM for Medical Image Segmentation | SpringerLink
Skip to main content

Robust Box Prompt Based SAM for Medical Image Segmentation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15242))

Included in the following conference series:

  • 104 Accesses

Abstract

The Segment Anything Model (SAM) can achieve satisfactory segmentation performance under high-quality box prompts. However, SAM’s robustness is compromised by the decline in box quality, limiting its practicality in clinical reality. In this study, we propose a novel Robust Box prompt based SAM (RoBox-SAM) to ensure SAM’s segmentation performance under prompts with different qualities. Our contribution is three-fold. First, we propose a prompt refinement module to implicitly perceive the potential targets, and output the offsets to directly transform the low-quality box prompt into a high-quality one. We then provide an online iterative strategy for further prompt refinement. Second, we introduce a prompt enhancement module to automatically generate point prompts to assist the box-promptable segmentation effectively. Last, we build a self-information extractor to encode the prior information from the input image. These features can optimize the image embeddings and attention calculation, thus, the robustness of SAM can be further enhanced. Extensive experiments on the large medical segmentation dataset including 99,299 images, 5 modalities, and 25 organs/targets validated the efficacy of our proposed RoBox-SAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Avital, I., et al.: Neural segmentation of seeding rois (srois) for pre-surgical brain tractography. IEEE Trans. Med. Imaging 39(5), 1655–1667 (2019)

    Article  MathSciNet  Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  4. Fan, Q., et al.: Stable segment anything model. arXiv preprint arXiv:2311.15776 (2023)

  5. Fu, H., Li, F., Orlando, J.I., et al.: Palm: Pathologic myopia challenge (2019). https://doi.org/10.21227/55pk-8z03

  6. Hicks, S.A., Jha, D., Thambawita, V., Halvorsen, P., Hammer, H.L., Riegler, M.A.: The EndoTect 2020 challenge: evaluation and comparison of classification, segmentation and inference time for endoscopy. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12668, pp. 263–274. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68793-9_18

    Chapter  Google Scholar 

  7. Huang, Y., et al.: On the robustness of segment anything. arXiv preprint arXiv:2305.16220 (2023)

  8. Huang, Y., et al.: Fourier test-time adaptation with multi-level consistency for robust classification. In: Greenspan, H., et al. (eds.) MICCAI 2023, vol. 14222, pp. 221–231. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43898-1_22

    Chapter  Google Scholar 

  9. Huang, Y., Yang, X., Liu, L., Zhou, H., Chang, A., Zhou, X., et al.: Segment anything model for medical images? Med. Image Anal. 92, 103061 (2024)

    Article  Google Scholar 

  10. Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: Proceedings of the IEEE/CVF CVPR, pp. 12341–12351 (2021)

    Google Scholar 

  11. Ji, Y., Bai, H., Yang, J., Luo, P.: Amos: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. In: Advances In Neural Information Processing Systems (NeurlPS) Benchmark and Dataset Track (2022)

    Google Scholar 

  12. Ke, L., Ye, M., Danelljan, M., Tai, Y.W., Tang, C.K., et al.: Segment anything in high quality. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  13. Kirillov, A., Mintun, E., Ravi, N., Mao, H., et al.: Segment anything. In: Proceedings of the IEEE/CVF ICCV, pp. 4015–4026 (2023)

    Google Scholar 

  14. Leclerc, S., Smistad, E., Pedrosa, J., Østvik, A., Cervenansky, F., et al.: Deep learning for segmentation using an open large-scale dataset in 2d echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  15. Lee, S., Shim, H., et al.: Learning local shape and appearance for segmentation of knee cartilage in 3d mri. In: Medical Image Analysis for the Clinic: a Grand Challenge. In Proceedings of the 13th International Conference on MICCAI 2010, Beijing, China, pp. 231–240 (2010)

    Google Scholar 

  16. Lemaître, G., Martí, R., Freixenet, J., et al.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: a review. Comput. Biol. Med. 60, 8–31 (2015)

    Article  Google Scholar 

  17. Li, F., Zhang, H., Sun, P., Zou, X., et al.: Semantic-sam: segment and recognize anything at any granularity. arXiv preprint arXiv:2307.04767 (2023)

  18. Li, X., Jia, M., Islam, M.T., et al.: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans. Med. Imaging 39(12), 4023–4033 (2020)

    Article  Google Scholar 

  19. Ma, J., He, Y., Li, F., Han, L., et al.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)

    Article  Google Scholar 

  20. Ma, J., et al.: Abdomenct-1k: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2021)

    Article  Google Scholar 

  21. Mazurowski, M.A., Dong, H., Gu, H., et al.: Segment anything model for medical image analysis: an experimental study. Med. Image Anal. 89, 102918 (2023)

    Article  Google Scholar 

  22. Polo, M.: Chest CT Segmentation Dataset. [EB/OL] (2020). https://www.kaggle.com/datasets/polomarco/chest-ct-segmentation

  23. Qiao, Y., Zhang, C., Kang, T., Kim, D., et al.: Robustness of sam: segment anything under corruptions and beyond. arXiv preprint arXiv:2306.07713 (2023)

  24. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  25. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)

    Google Scholar 

  26. Wang, Y., Zhao, Y., Petzold, L.: An empirical study on the robustness of the segment anything model (sam). arXiv preprint arXiv:2305.06422 (2023)

  27. Wu, J., Fu, R., Fang, H., Liu, Y., Wang, Z., et al.: Medical sam adapter: adapting segment anything model for medical image segmentation. arXiv preprint arXiv:2304.12620 (2023)

  28. Xie, W., Willems, N., Patil, S., Li, Y., Kumar, M.: Sam fewshot finetuning for anatomical segmentation in medical images. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3253–3261 (2024)

    Google Scholar 

  29. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF CVPR, pp. 4085–4095 (2020)

    Google Scholar 

  30. Zhou, J., Jia, X., Ni, D., et al.: Thyroid nodule segmentation and classification in ultrasound images (2020). https://zenodo.org/records/3715942

Download references

Acknowledgments

This work was supported by the grant from National Natural Science Foundation of China (12326619, 62101343, 62171290), Science and Technology Planning Project of Guangdong Province (2023A0505020002), and Shenzhen-Hong Kong Joint Research Program (SGDX20201103095613036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ni .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y. et al. (2025). Robust Box Prompt Based SAM for Medical Image Segmentation. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15242. Springer, Cham. https://doi.org/10.1007/978-3-031-73290-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73290-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73292-8

  • Online ISBN: 978-3-031-73290-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics