Advanced Framework for Fetal Diffusion MRI: Dynamic Distortion and Motion Correction | SpringerLink
Skip to main content

Advanced Framework for Fetal Diffusion MRI: Dynamic Distortion and Motion Correction

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14747))

  • 34 Accesses

Abstract

Diffusion magnetic resonance imaging (dMRI) is essential for studying the microstructure of the developing fetal brain. However, fetal motion during scans and its interaction with magnetic field inhomogeneities lead to amplified artifacts and data scattering, compromising the consistency of dMRI analysis. This work introduces HAITCH, a novel open-source framework for correcting and reconstructing high-angular resolution dMRI data from challenging fetal scans. Our multi-stage approach incorporates an optimized multi-shell design for increased information capture and motion tolerance, a blip-reversed dual-echo multi-shell acquisition for dynamic distortion correction, advanced motion correction for robust and model-free reconstruction, and outlier detection for improved reconstruction fidelity. Validation experiments on real fetal dMRI scans demonstrate significant improvements and accurate correction across diverse fetal ages and motion levels. HAITCH effectively removes artifacts and reconstructs high-fidelity dMRI data suitable for advanced diffusion modeling and tractography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afacan, O., et al.: Fetal echo-planar imaging: promises and challenges. Top. Magn. Reson. Imaging TMRI 28(5), 245 (2019)

    Article  Google Scholar 

  2. Andersson, J.L., Graham, M.S., Drobnjak, I., Zhang, H., Filippini, N., Bastiani, M.: Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. Neuroimage 152, 450–466 (2017)

    Article  Google Scholar 

  3. Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2), 870–888 (2003)

    Article  Google Scholar 

  4. Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69(6), 1534–1540 (2013)

    Article  Google Scholar 

  5. Christiaens, D., et al.: In utero diffusion MRI: challenges, advances, and applications. Top. Magn. Reson. Imaging 28(5), 255–264 (2019)

    Article  Google Scholar 

  6. Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A.N., Hajnal, J.V.: Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage 200, 391–404 (2019)

    Article  Google Scholar 

  7. Deprez, M., et al.: Higher order spherical harmonics reconstruction of fetal diffusion MRI with intensity correction. IEEE Trans. Med. Imaging 39(4), 1104–1113 (2019)

    Article  Google Scholar 

  8. Dubois, J., Poupon, C., Lethimonnier, F., Le Bihan, D.: Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets. Magn. Reson. Mater. Phys. Biol. Med. 19, 134–143 (2006)

    Google Scholar 

  9. Fogtmann, M., et al.: A unified approach to diffusion direction sensitive slice registration and 3-D DTI reconstruction from moving fetal brain anatomy. IEEE Trans. Med. Imaging 33(2), 272–289 (2013)

    Article  Google Scholar 

  10. Gholipour, A., et al.: Fetal MRI: a technical update with educational aspirations. Concepts Magn. Reson. Part A 43(6), 237–266 (2014)

    Article  Google Scholar 

  11. Hutter, J., et al.: Slice-level diffusion encoding for motion and distortion correction. Med. Image Anal. 48, 214–229 (2018)

    Article  Google Scholar 

  12. Jezzard, P., Balaban, R.S.: Correction for geometric distortion in echo planar images from B0 field variations. Magn. Reson. Med. 34(1), 65–73 (1995)

    Article  Google Scholar 

  13. Jiang, S., et al.: Diffusion tensor imaging (DTI) of the brain in moving subjects: application to in-utero fetal and ex-utero studies. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 62(3), 645–655 (2009)

    Article  Google Scholar 

  14. Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M.: Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 76(5), 1574–1581 (2016)

    Article  Google Scholar 

  15. Khan, S., et al.: Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. Neuroimage 185, 593–608 (2019)

    Article  Google Scholar 

  16. Koay, C.G., Basser, P.J.: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J. Magn. Reson. 179(2), 317–322 (2006)

    Article  Google Scholar 

  17. Marami, B., et al.: Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 156, 475–488 (2017)

    Article  Google Scholar 

  18. Merlet, S.L., Deriche, R.: Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI. Med. Image Anal. 17(5), 556–572 (2013)

    Article  Google Scholar 

  19. Oubel, E., Koob, M., Studholme, C., Dietemann, J.L., Rousseau, F.: Reconstruction of scattered data in fetal diffusion MRI. Med. Image Anal. 16(1), 28–37 (2012)

    Article  Google Scholar 

  20. Özarslan, E., et al.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage 78, 16–32 (2013)

    Article  Google Scholar 

  21. Snoussi, H., Karimi, D., Afacan, O., Utkur, M., Gholipour, A.: Haitch: a framework for distortion and motion correction in fetal multi-shell diffusion-weighted MRI. arXiv preprint arXiv:2406.20042 (2024)

  22. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  23. Veraart, J., Fieremans, E., Novikov, D.S.: Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 76(5), 1582–1593 (2016)

    Article  Google Scholar 

  24. Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., Fieremans, E.: Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406 (2016)

    Article  Google Scholar 

  25. Voss, H.U., Watts, R., Uluğ, A.M., Ballon, D.: Fiber tracking in the cervical spine and inferior brain regions with reversed gradient diffusion tensor imaging. Magn. Reson. Imaging 24(3), 231–239 (2006)

    Article  Google Scholar 

  26. Zeng, H., Constable, R.T.: Image distortion correction in epi: comparison of field mapping with point spread function mapping. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 48(1), 137–146 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported in part by the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke, and Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health (NIH) under award numbers R01NS106030, R01EB031849, R01EB032366, R01HD109395, R01HD110772, R01HD113199, R01NS128281, and R01NS121657; in part by the Office of the Director of the NIH under award number S10OD025111; and in part by the National Science Foundation (NSF) under grant number 212306. This research was also partly supported by an award from NVIDIA Corporation and utilized NVIDIA RTX A6000 and RTX A5000 GPUs. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, NSF, or NVIDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haykel Snoussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Snoussi, H., Karimi, D., Afacan, O., Utkur, M., Gholipour, A. (2025). Advanced Framework for Fetal Diffusion MRI: Dynamic Distortion and Motion Correction. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2024. Lecture Notes in Computer Science, vol 14747. Springer, Cham. https://doi.org/10.1007/978-3-031-73260-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73260-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73259-1

  • Online ISBN: 978-3-031-73260-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics