Textual Query-Driven Mask Transformer for Domain Generalized Segmentation | SpringerLink
Skip to main content

Textual Query-Driven Mask Transformer for Domain Generalized Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15115))

Included in the following conference series:

  • 128 Accesses

Abstract

In this paper, we introduce a method to tackle Domain Generalized Semantic Segmentation (DGSS) by utilizing domain-invariant semantic knowledge from text embeddings of vision-language models. We employ the text embeddings as object queries within a transformer-based segmentation framework (textual object queries). These queries are regarded as a domain-invariant basis for pixel grouping in DGSS. To leverage the power of textual object queries, we introduce a novel framework named the textual query-driven mask transformer (tqdm). Our tqdm aims to (1) generate textual object queries that maximally encode domain-invariant semantics and (2) enhance the semantic clarity of dense visual features. Additionally, we suggest three regularization losses to improve the efficacy of tqdm by aligning between visual and textual features. By utilizing our method, the model can comprehend inherent semantic information for classes of interest, enabling it to generalize to extreme domains (e.g., sketch style). Our tqdm achieves 68.9 mIoU on GTA5\(\rightarrow \)Cityscapes, outperforming the prior state-of-the-art method by 2.5 mIoU. The project page is available at https://byeonghyunpak.github.io/tqdm.

B. Pak, B. Woo and S. Kim—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://chat.openai.com.

  2. 2.

    Semantic coherence is a property of vision models in which semantically similar regions in images exhibit similar pixel representations [3, 38].

References

  1. Cai, Z., et al.: X-DETR: a versatile architecture for instance-wise vision-language tasks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13696, pp. 290–308. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20059-5_17

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  4. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR (2022)

    Google Scholar 

  5. Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. NeurIPS (2021)

    Google Scholar 

  6. Cho, J., Nam, G., Kim, S., Yang, H., Kwak, S.: PromptStyler: prompt-driven style generation for source-free domain generalization. In: ICCV (2023)

    Google Scholar 

  7. Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: RobustNet: improving domain generalization in urban-scene segmentation via instance selective whitening. In: CVPR (2021)

    Google Scholar 

  8. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  9. Desai, K., Johnson, J.: VirTex: learning visual representations from textual annotations. In: CVPR (2021)

    Google Scholar 

  10. Ding, J., Xue, N., Xia, G.S., Schiele, B., Dai, D.: HGFormer: hierarchical grouping transformer for domain heneralized semantic segmentation. In: CVPR (2023)

    Google Scholar 

  11. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  12. Fahes, M., Vu, T.H., Bursuc, A., Pérez, P., de Charette, R.: A simple recipe for language-guided domain generalized segmentation. arXiv preprint arXiv:2311.17922 (2023)

  13. Fang, Y., Sun, Q., Wang, X., Huang, T., Wang, X., Cao, Y.: EVA-02: a visual representation for neon genesis. arXiv preprint arXiv:2303.11331 (2023)

  14. Fang, Y., et al.: EVA: exploring the limits of masked visual representation learning at scale. In: CVPR (2023)

    Google Scholar 

  15. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  16. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR (2022)

    Google Scholar 

  17. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  18. Hoyer, L., Dai, D., Van Gool, L.: DAFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation. In: CVPR (2022)

    Google Scholar 

  19. Huang, Z., Zhou, A., Ling, Z., Cai, M., Wang, H., Lee, Y.J.: A sentence speaks a thousand images: Domain generalization through distilling CLIP with language guidance. In: ICCV (2023)

    Google Scholar 

  20. Hümmer, C., Schwonberg, M., Zhong, L., Cao, H., Knoll, A., Gottschalk, H.: VLTSeg: simple transfer of CLIP-based vision-language representations for domain generalized semantic segmentation. arXiv preprint arXiv:2312.02021 (2023)

  21. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: ICML (2021)

    Google Scholar 

  22. Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., Carion, N.: MDETR – modulated detection for end-to-end multi-modal understanding. In: ICCV (2021)

    Google Scholar 

  23. Kim, S., Kim, D.H., Kim, H.: Texture learning domain randomization for domain generalized segmentation. In: ICCV (2023)

    Google Scholar 

  24. Lee, S., Seong, H., Lee, S., Kim, E.: WildNet: learning domain generalized semantic segmentation from the wild. In: CVPR (2022)

    Google Scholar 

  25. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. In: ICLR (2022)

    Google Scholar 

  26. Li, F., Zhang, H., Liu, S., Guo, J., Ni, L.M., Zhang, L.: DN-DETR: accelerate detr training by introducing query denoising. In: CVPR (2022)

    Google Scholar 

  27. Li, X., et al.: Transformer-based visual segmentation: a survey. arXiv preprint arXiv:2304.09854 (2023)

  28. Li, Z., Kamnitsas, K., Glocker, B.: Analyzing overfitting under class imbalance in neural networks for image segmentation. IEEE Trans. Med. Imaging 40(3), 1065–1077 (2020)

    Article  Google Scholar 

  29. Li, Z., et al.: Panoptic SegFormer: delving deeper into panoptic segmentation with transformers. In: CVPR (2022)

    Google Scholar 

  30. Liang, F., et al.: Open-vocabulary semantic segmentation with mask-adapted CLIP. In: CVPR (2023)

    Google Scholar 

  31. Lin, Y., et al.: CLIP is also an efficient segmenter: a text-driven approach for weakly supervised semantic segmentation. In: CVPR (2023)

    Google Scholar 

  32. Liu, S., et al.: DAB-DETR: dynamic anchor boxes are better queries for DETR. ICLR (2022)

    Google Scholar 

  33. Liu, Y., Liu, C., Han, K., Tang, Q., Qin, Z.: Boosting semantic segmentation from the perspective of explicit class embeddings. In: ICCV (2023)

    Google Scholar 

  34. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. ICLR (2019)

    Google Scholar 

  35. Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. NeurIPS (2019)

    Google Scholar 

  36. Mangla, P., Chandhok, S., Aggarwal, M., Balasubramanian, V.N., Krishnamurthy, B.: INDIGO: intrinsic multimodality for domain generalization. arXiv preprint arXiv:2206.05912 (2022)

  37. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV (2016)

    Google Scholar 

  38. Mukhoti, J., et al.: Open vocabulary semantic segmentation with patch aligned contrastive learning. In: CVPR (2023)

    Google Scholar 

  39. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017)

    Google Scholar 

  40. Nguyen, T., Ilharco, G., Wortsman, M., Oh, S., Schmidt, L.: Quality not quantity: on the interaction between dataset design and robustness of CLIP. NeurIPS (2022)

    Google Scholar 

  41. Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  42. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via ibn-net. In: ECCV (2018)

    Google Scholar 

  43. Pan, X., Zhan, X., Shi, J., Tang, X., Luo, P.: Switchable whitening for deep representation learning. In: ICCV (2019)

    Google Scholar 

  44. Peng, D., Lei, Y., Hayat, M., Guo, Y., Li, W.: Semantic-aware domain generalized segmentation. In: CVPR (2022)

    Google Scholar 

  45. Pham, H., et al.: Combined scaling for zero-shot transfer learning. Neurocomputing (2023)

    Google Scholar 

  46. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  47. Rao, Y., et al.: DenseCLIP: language-guided dense prediction with context-aware prompting. In: CVPR (2022)

    Google Scholar 

  48. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  49. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR (2016)

    Google Scholar 

  50. Sun, Q., Chen, H., Zheng, M., Wu, Z., Felsberg, M., Tang, Y.: IBAFormer: intra-batch attention transformer for domain generalized semantic segmentation. arXiv preprint arXiv:2309.06282 (2023)

  51. Sun, Q., Fang, Y., Wu, L., Wang, X., Cao, Y.: EVA-CLIP: improved training techniques for clip at scale. arXiv preprint arXiv:2303.15389 (2023)

  52. Tan, H., Bansal, M.: LXMERT: learning cross-modality encoder representations from transformers. arXiv preprint arXiv:1908.07490 (2019)

  53. Vaswani, A., et al.: Attention is all you need. NeurIPS (2017)

    Google Scholar 

  54. Wei, Z., et al.: Stronger, fewer, & superior: harnessing vision foundation models for domain generalized semantic segmentation. arXiv preprint arXiv:2312.04265 (2023)

  55. Wortsman, M., et al.: Robust fine-tuning of zero-shot models. In: CVPR (2022)

    Google Scholar 

  56. Xu, M., et al.: A simple baseline for open-vocabulary semantic segmentation with pre-trained vision-language model. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13689, pp. 736–753. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_42

  57. Yu, F., et al.: BDD100k: a diverse driving dataset for heterogeneous multitask learning. In: CVPR (2020)

    Google Scholar 

  58. Yu, Q., et al.: kMaX-DeepLab: k-means mask transformer. In: ECCV (2022)

    Google Scholar 

  59. Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A., Keutzer, K., Gong, B.: Domain randomization and pyramid consistency: simulation-to-real generalization without accessing target domain data. In: ICCV (2019)

    Google Scholar 

  60. Zhang, B., Tian, Z., Tang, Q., Chu, X., Wei, X., Shen, C., et al.: Segvit: semantic segmentation with plain vision transformers. NeurIPS (2022)

    Google Scholar 

  61. Zhang, H., et al.: DINO: DETR with improved denoising anchor boxes for end-to-end object detection. arXiv preprint arXiv:2203.03605 (2022)

  62. Zhang, H., et al.: MP-Former: mask-piloted transformer for image segmentation. In: CVPR (2023)

    Google Scholar 

  63. Zhao, Y., Zhong, Z., Zhao, N., Sebe, N., Lee, G.H.: Style-hallucinated dual consistency learning for domain generalized semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13688, pp. 535–552. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_31

  64. Zhao, Y., Zhong, Z., Zhao, N., Sebe, N., Lee, G.H.: Style-hallucinated dual consistency learning: a unified framework for visual domain generalization. IJCV (2023)

    Google Scholar 

  65. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from CLIP. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13688, pp. 696–712. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_40

  66. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. IJCV (2022)

    Google Scholar 

  67. Zhou, Z., Lei, Y., Zhang, B., Liu, L., Liu, Y.: ZegCLIP: towards adapting clip for zero-shot semantic segmentation. In: CVPR (2023)

    Google Scholar 

  68. Zhu, C., Chen, L.: A survey on open-vocabulary detection and segmentation: past, present, and future. arXiv preprint arXiv:2307.09220 (2023)

  69. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2020)

    Google Scholar 

Download references

Acknowledgements

We sincerely thank Chanyong Lee and Eunjin Koh for their constructive discussions and support. We also appreciate Junyoung Kim, Chaehyeon Lim and Minkyu Song for providing insightful feedback. This work was supported by the Agency for Defense Development (ADD) grant funded by the Korea government (279002001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeonghyun Pak .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4254 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pak, B., Woo, B., Kim, S., Kim, Dh., Kim, H. (2025). Textual Query-Driven Mask Transformer for Domain Generalized Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15115. Springer, Cham. https://doi.org/10.1007/978-3-031-72998-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72998-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72997-3

  • Online ISBN: 978-3-031-72998-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics