Abstract
Driven by the upsurge progress in text-to-image (T2I) generation models, text-to-video (T2V) generation has experienced a significant advance as well. Accordingly, tasks such as modifying the object or changing the style in a video have been possible. However, previous works usually work well on trivial and consistent shapes, and easily collapse on a difficult target that has a largely different body shape from the original one. In this paper, we spot the bias problem in the existing video editing method that restricts the range of choices for the new protagonist and attempt to address this issue using the conventional image-level personalization method. We adopt motion personalization that isolates the motion from a single source video and then modifies the protagonist accordingly. To deal with the natural discrepancy between image and video, we propose a motion word with an inflated textual embedding to properly represent the motion in a source video. We also regulate the motion word to attend to proper motion-related areas by introducing a novel pseudo optical flow, efficiently computed from the pre-calculated attention maps. Finally, we decouple the motion from the appearance of the source video with an additional pseudo word. Extensive experiments demonstrate the editing capability of our method, taking a step toward more diverse and extensive video editing. Our project page: https://ldynx.github.io/SAVE/
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avrahami, O., Aberman, K., Fried, O., Cohen-Or, D., Lischinski, D.: Break-a-scene: extracting multiple concepts from a single image. arXiv preprint arXiv:2305.16311 (2023)
Bai, J., et al.: Uniedit: a unified tuning-free framework for video motion and appearance editing. arXiv preprint arXiv:2402.13185 (2024)
Bar-Tal, O., Ofri-Amar, D., Fridman, R., Kasten, Y., Dekel, T.: Text2live: text-driven layered image and video editing. In: European Conference on Computer Vision, pp. 707–723. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19784-0_41
Blattmann, A., et al.: Align your latents: high-resolution video synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22563–22575 (2023)
Chen, H., et al.: Videocrafter2: overcoming data limitations for high-quality video diffusion models (2024)
Esser, P., Chiu, J., Atighehchian, P., Granskog, J., Germanidis, A.: Structure and content-guided video synthesis with diffusion models. arXiv preprint arXiv:2302.03011 (2023)
Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion (2023)
Geyer, M., Bar-Tal, O., Bagon, S., Dekel, T.: Tokenflow: consistent diffusion features for consistent video editing. arXiv preprint arXiv:2307.10373 (2023)
Guo, Y., et al.: Animatediff: animate your personalized text-to-image diffusion models without specific tuning. arXiv preprint arXiv:2307.04725 (2023)
Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control (2023)
Hessel, J., Holtzman, A., Forbes, M., Bras, R.L., Choi, Y.: Clipscore: a reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718 (2021)
Ho, J., et al.: Imagen video: high definition video generation with diffusion models. arXiv preprint arXiv:2210.02303 (2022)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Hong, W., Ding, M., Zheng, W., Liu, X., Tang, J.: Cogvideo: large-scale pretraining for text-to-video generation via transformers. arXiv preprint arXiv:2205.15868 (2022)
Huang, Z., Wu, T., Jiang, Y., Chan, K.C., Liu, Z.: Reversion: diffusion-based relation inversion from images. arXiv preprint arXiv:2303.13495 (2023)
Jin, Y., et al.: Video-lavit: unified video-language pre-training with decoupled visual-motional tokenization (2024)
Kara, O., Kurtkaya, B., Yesiltepe, H., Rehg, J.M., Yanardag, P.: Rave: randomized noise shuffling for fast and consistent video editing with diffusion models (2023)
Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)
Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept customization of text-to-image diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1931–1941 (2023)
Li, X., Ma, C., Yang, X., Yang, M.H.: Vidtome: video token merging for zero-shot video editing (2023)
Liang, F., et al.: Flowvid: taming imperfect optical flows for consistent video-to-video synthesis (2023)
Liu, S., Zhang, Y., Li, W., Lin, Z., Jia, J.: Video-p2p: video editing with cross-attention control. arXiv preprint arXiv:2303.04761 (2023)
Ma, X., et al.: Latte: latent diffusion transformer for video generation. arXiv preprint arXiv:2401.03048 (2024)
Ma, Z., et al.: Magic-me: identity-specific video customized diffusion (2024)
Mokady, R., Hertz, A., Aberman, K., Pritch, Y., Cohen-Or, D.: Null-text inversion for editing real images using guided diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6038–6047 (2023)
Molad, E., et al.: Dreamix: video diffusion models are general video editors. arXiv preprint arXiv:2302.01329 (2023)
Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)
Qi, C., et al.: Fatezero: fusing attentions for zero-shot text-based video editing (2023)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.061251(2), 3 (2022)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dreambooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)
Singer, U., et al.: Make-a-video: text-to-video generation without text-video data. arXiv preprint arXiv:2209.14792 (2022)
Sohn, K., et al.: Styledrop: text-to-image generation in any style. arXiv preprint arXiv:2306.00983 (2023)
Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations (2021)
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Tewel, Y., Gal, R., Chechik, G., Atzmon, Y.: Key-locked rank one editing for text-to-image personalization. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11 (2023)
Wang, W., et al.: Zero-shot video editing using off-the-shelf image diffusion models. arXiv preprint arXiv:2303.17599 (2023)
Wei, Y., Zhang, Y., Ji, Z., Bai, J., Zhang, L., Zuo, W.: Elite: encoding visual concepts into textual embeddings for customized text-to-image generation (2023)
Wu, C., Liang, J., Ji, L., Yang, F., Fang, Y., Jiang, D., Duan, N.: Nüwa: Visual synthesis pre-training for neural visual world creation. In: European Conference on Computer Vision, pp. 720–736. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19787-1_41
Wu, J.Z., et al.: Tune-a-video: one-shot tuning of image diffusion models for text-to-video generation (2023)
Wu, J.Z., et al.: Cvpr 2023 text guided video editing competition (2023)
Wu, R., Chen, L., Yang, T., Guo, C., Li, C., Zhang, X.: Lamp: learn a motion pattern for few-shot-based video generation. arXiv preprint arXiv:2310.10769 (2023)
Xiao, G., Yin, T., Freeman, W.T., Durand, F., Han, S.: Fastcomposer: tuning-free multi-subject image generation with localized attention. arXiv preprint arXiv:2305.10431 (2023)
Xu, H., Zhang, J., Cai, J., Rezatofighi, H., Tao, D.: Gmflow: learning optical flow via global matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8121–8130 (2022)
Yang, S., Zhou, Y., Liu, Z., Loy, C.C.: Rerender a video: zero-shot text-guided video-to-video translation. arXiv preprint arXiv:2306.07954 (2023)
Yuan, H., et al.: Instructvideo: instructing video diffusion models with human feedback (2023)
Zhang, D.J., et al.: Show-1: marrying pixel and latent diffusion models for text-to-video generation. arXiv preprint arXiv:2309.15818 (2023)
Zhang, Y., Wei, Y., Jiang, D., Zhang, X., Zuo, W., Tian, Q.: Controlvideo: training-free controllable text-to-video generation. arXiv preprint arXiv:2305.13077 (2023)
Zhang, Y., Xing, Z., Zeng, Y., Fang, Y., Chen, K.: Pia: your personalized image animator via plug-and-play modules in text-to-image models (2023)
Zhang, Z., Li, B., Nie, X., Han, C., Guo, T., Liu, L.: Towards consistent video editing with text-to-image diffusion models. Adv. Neural Inf. Process. Syst. (2024)
Zhao, R., et al.: Motiondirector: motion customization of text-to-video diffusion models. arXiv preprint arXiv:2310.08465 (2023)
Acknowledgments
This work was supported by NRF (2021R1A2C3006659), KOCCA (RS-2024-00398320) and IITP (RS-2021-II211343), all funded by the Korean Government.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Song, Y., Shin, W., Lee, J., Kim, J., Kwak, N. (2025). SAVE: Protagonist Diversification with Structure Agnostic Video Editing. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15138. Springer, Cham. https://doi.org/10.1007/978-3-031-72989-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-72989-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72988-1
Online ISBN: 978-3-031-72989-8
eBook Packages: Computer ScienceComputer Science (R0)