Abstract
Simultaneous Localization and Mapping (SLAM) has been crucial across various domains, including autonomous driving, mobile robotics, and mixed reality. Dense visual SLAM, leveraging RGB-D camera systems, offers advantages but faces challenges in achieving real-time performance, robustness, and scalability for large-scale scenes. Recent approaches utilizing neural implicit scene representations show promise but suffer from high computational costs and memory requirements. ESLAM introduced a plane-based tensor decomposition but still struggled with memory growth. Addressing these challenges, we propose a more efficient visual SLAM model, called LRSLAM, utilizing low-rank tensor decomposition methods. Our approach, leveraging the Six-axis and CP decompositions, achieves better convergence rates, memory efficiency, and reconstruction/localization quality than existing state-of-the-art approaches. Evaluation across diverse indoor RGB-D datasets demonstrates LRSLAM’s superior performance in terms of parameter efficiency, processing time, and accuracy, retaining reconstruction and localization quality. Our code will be publicly available upon publication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2(3), 194–220 (2017)
Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “ckart-young” decomposition. Psychometrika 35(3), 283–319 (1970)
Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16123–16133 (2022)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Chen, X., Milioto, A., Palazzolo, E., Giguere, P., Behley, J., Stachniss, C.: Suma++: efficient lidar-based semantic slam. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4530–4537. IEEE (2019)
Covolan, J.P.M., Sementille, A.C., Sanches, S.R.R.: A mapping of visual slam algorithms and their applications in augmented reality. In: 2020 22nd Symposium on Virtual and Augmented Reality (SVR), pp. 20–29. IEEE (2020)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)
Dworakowski, D., Thompson, C., Pham-Hung, M., Nejat, G.: A robot architecture using contextslam to find products in unknown crowded retail environments. Robotics 10(4), 110 (2021)
Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.: Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43, 55–81 (2015)
Gui, J., Gu, D., Wang, S., Hu, H.: A review of visual inertial odometry from filtering and optimisation perspectives. Adv. Robot. 29(20), 1289–1301 (2015)
Huang, G.: Visual-inertial navigation: a concise review. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9572–9582. IEEE (2019)
Huang, H., Li, L., Cheng, H., Yeung, S.K.: Photo-slam: real-time simultaneous localization and photorealistic mapping for monocular, stereo, and RGB-D cameras. arXiv preprint arXiv:2311.16728 (2023)
Jinyu, L., Bangbang, Y., Danpeng, C., Nan, W., Guofeng, Z., Hujun, B.: Survey and evaluation of monocular visual-inertial slam algorithms for augmented reality. Virtual Reality Intell. Hardware 1(4), 386–410 (2019)
Johari, M.M., Carta, C., Fleuret, F.: Eslam: efficient dense slam system based on hybrid representation of signed distance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17408–17419 (2023)
Keetha, N., et al.: Splatam: splat, track & map 3D gaussians for dense RGB-D slam. arXiv preprint arXiv:2312.02126 (2023)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)
Li, M., Liu, S., Zhou, H.: SGS-slam: semantic gaussian splatting for neural dense slam. arXiv preprint arXiv:2402.03246 (2024)
Liu, C., Zhou, C., Cao, W., Li, F., Jia, P.: A novel design and implementation of autonomous robotic car based on ROS in indoor scenario. Robotics 9(1), 19 (2020)
Matsuki, H., Murai, R., Kelly, P.H., Davison, A.J.: Gaussian splatting slam. arXiv preprint arXiv:2312.06741 (2023)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Ruan, K., Wu, Z., Xu, Q.: Smart cleaner: a new autonomous indoor disinfection robot for combating the covid-19 pandemic. Robotics 10(3), 87 (2021)
Singandhupe, A., La, H.M.: A review of slam techniques and security in autonomous driving. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 602–607. IEEE (2019)
Straub, J., et al.: The replica dataset: a digital replica of indoor spaces. arXiv preprint arXiv:1906.05797 (2019)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580. IEEE (2012)
Sucar, E., Liu, S., Ortiz, J., Davison, A.J.: iMAP: implicit mapping and positioning in real-time. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6229–6238 (2021)
Taketomi, T., Uchiyama, H., Ikeda, S.: Visual slam algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 9(1), 1–11 (2017)
Tosi, F., et al.: How nerfs and 3D gaussian splatting are reshaping slam: a survey. arXiv preprint arXiv:2402.13255 (2024)
Yan, C., et al.: GS-slam: dense visual slam with 3D gaussian splatting. arXiv preprint arXiv:2311.11700 (2023)
Yousif, K., Bab-Hadiashar, A., Hoseinnezhad, R.: An overview to visual odometry and visual slam: applications to mobile robotics. Intell. Ind. Syst. 1(4), 289–311 (2015)
Yugay, V., Li, Y., Gevers, T., Oswald, M.R.: Gaussian-slam: photo-realistic dense slam with gaussian splatting. arXiv preprint arXiv:2312.10070 (2023)
Zhang, S., Zheng, L., Tao, W.: Survey and evaluation of RGB-D slam. IEEE Access 9, 21367–21387 (2021)
Zhu, Z., et al.: Nice-slam: neural implicit scalable encoding for slam. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796 (2022)
Acknowledgment
This work was partly supported by IITP under the Leading Generative AI Human Resources Development(IITP-2024-RS-2024-00397085, 30%) grant, IITP grant (RS-2022-II220043, Adaptive Personality for Intelligent Agents, 30% and IITP-2024-2020-0-01819, ICT Creative Consilience program, 10%). This work was also partly supported by Basic Science Research Program through the NRF funded by the Ministry of Education(NRF-2021R1A6A1A13044830, 30%).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Park, H., Park, M., Nam, G., Kim, J. (2025). LRSLAM: Low-Rank Representation of Signed Distance Fields in Dense Visual SLAM System. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15138. Springer, Cham. https://doi.org/10.1007/978-3-031-72989-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-72989-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72988-1
Online ISBN: 978-3-031-72989-8
eBook Packages: Computer ScienceComputer Science (R0)