LRSLAM: Low-Rank Representation of Signed Distance Fields in Dense Visual SLAM System | SpringerLink
Skip to main content

LRSLAM: Low-Rank Representation of Signed Distance Fields in Dense Visual SLAM System

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Simultaneous Localization and Mapping (SLAM) has been crucial across various domains, including autonomous driving, mobile robotics, and mixed reality. Dense visual SLAM, leveraging RGB-D camera systems, offers advantages but faces challenges in achieving real-time performance, robustness, and scalability for large-scale scenes. Recent approaches utilizing neural implicit scene representations show promise but suffer from high computational costs and memory requirements. ESLAM introduced a plane-based tensor decomposition but still struggled with memory growth. Addressing these challenges, we propose a more efficient visual SLAM model, called LRSLAM, utilizing low-rank tensor decomposition methods. Our approach, leveraging the Six-axis and CP decompositions, achieves better convergence rates, memory efficiency, and reconstruction/localization quality than existing state-of-the-art approaches. Evaluation across diverse indoor RGB-D datasets demonstrates LRSLAM’s superior performance in terms of parameter efficiency, processing time, and accuracy, retaining reconstruction and localization quality. Our code will be publicly available upon publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2(3), 194–220 (2017)

    Article  Google Scholar 

  2. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “ckart-young” decomposition. Psychometrika 35(3), 283–319 (1970)

    Google Scholar 

  3. Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16123–16133 (2022)

    Google Scholar 

  4. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

    Chapter  Google Scholar 

  5. Chen, X., Milioto, A., Palazzolo, E., Giguere, P., Behley, J., Stachniss, C.: Suma++: efficient lidar-based semantic slam. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4530–4537. IEEE (2019)

    Google Scholar 

  6. Covolan, J.P.M., Sementille, A.C., Sanches, S.R.R.: A mapping of visual slam algorithms and their applications in augmented reality. In: 2020 22nd Symposium on Virtual and Augmented Reality (SVR), pp. 20–29. IEEE (2020)

    Google Scholar 

  7. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  8. Dworakowski, D., Thompson, C., Pham-Hung, M., Nejat, G.: A robot architecture using contextslam to find products in unknown crowded retail environments. Robotics 10(4), 110 (2021)

    Article  Google Scholar 

  9. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.: Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43, 55–81 (2015)

    Article  Google Scholar 

  10. Gui, J., Gu, D., Wang, S., Hu, H.: A review of visual inertial odometry from filtering and optimisation perspectives. Adv. Robot. 29(20), 1289–1301 (2015)

    Article  Google Scholar 

  11. Huang, G.: Visual-inertial navigation: a concise review. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9572–9582. IEEE (2019)

    Google Scholar 

  12. Huang, H., Li, L., Cheng, H., Yeung, S.K.: Photo-slam: real-time simultaneous localization and photorealistic mapping for monocular, stereo, and RGB-D cameras. arXiv preprint arXiv:2311.16728 (2023)

  13. Jinyu, L., Bangbang, Y., Danpeng, C., Nan, W., Guofeng, Z., Hujun, B.: Survey and evaluation of monocular visual-inertial slam algorithms for augmented reality. Virtual Reality Intell. Hardware 1(4), 386–410 (2019)

    Article  Google Scholar 

  14. Johari, M.M., Carta, C., Fleuret, F.: Eslam: efficient dense slam system based on hybrid representation of signed distance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17408–17419 (2023)

    Google Scholar 

  15. Keetha, N., et al.: Splatam: splat, track & map 3D gaussians for dense RGB-D slam. arXiv preprint arXiv:2312.02126 (2023)

  16. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)

    Google Scholar 

  17. Li, M., Liu, S., Zhou, H.: SGS-slam: semantic gaussian splatting for neural dense slam. arXiv preprint arXiv:2402.03246 (2024)

  18. Liu, C., Zhou, C., Cao, W., Li, F., Jia, P.: A novel design and implementation of autonomous robotic car based on ROS in indoor scenario. Robotics 9(1), 19 (2020)

    Article  Google Scholar 

  19. Matsuki, H., Murai, R., Kelly, P.H., Davison, A.J.: Gaussian splatting slam. arXiv preprint arXiv:2312.06741 (2023)

  20. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  21. Ruan, K., Wu, Z., Xu, Q.: Smart cleaner: a new autonomous indoor disinfection robot for combating the covid-19 pandemic. Robotics 10(3), 87 (2021)

    Article  Google Scholar 

  22. Singandhupe, A., La, H.M.: A review of slam techniques and security in autonomous driving. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 602–607. IEEE (2019)

    Google Scholar 

  23. Straub, J., et al.: The replica dataset: a digital replica of indoor spaces. arXiv preprint arXiv:1906.05797 (2019)

  24. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580. IEEE (2012)

    Google Scholar 

  25. Sucar, E., Liu, S., Ortiz, J., Davison, A.J.: iMAP: implicit mapping and positioning in real-time. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6229–6238 (2021)

    Google Scholar 

  26. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual slam algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 9(1), 1–11 (2017)

    Google Scholar 

  27. Tosi, F., et al.: How nerfs and 3D gaussian splatting are reshaping slam: a survey. arXiv preprint arXiv:2402.13255 (2024)

  28. Yan, C., et al.: GS-slam: dense visual slam with 3D gaussian splatting. arXiv preprint arXiv:2311.11700 (2023)

  29. Yousif, K., Bab-Hadiashar, A., Hoseinnezhad, R.: An overview to visual odometry and visual slam: applications to mobile robotics. Intell. Ind. Syst. 1(4), 289–311 (2015)

    Article  Google Scholar 

  30. Yugay, V., Li, Y., Gevers, T., Oswald, M.R.: Gaussian-slam: photo-realistic dense slam with gaussian splatting. arXiv preprint arXiv:2312.10070 (2023)

  31. Zhang, S., Zheng, L., Tao, W.: Survey and evaluation of RGB-D slam. IEEE Access 9, 21367–21387 (2021)

    Article  Google Scholar 

  32. Zhu, Z., et al.: Nice-slam: neural implicit scalable encoding for slam. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796 (2022)

    Google Scholar 

Download references

Acknowledgment

This work was partly supported by IITP under the Leading Generative AI Human Resources Development(IITP-2024-RS-2024-00397085, 30%) grant, IITP grant (RS-2022-II220043, Adaptive Personality for Intelligent Agents, 30% and IITP-2024-2020-0-01819, ICT Creative Consilience program, 10%). This work was also partly supported by Basic Science Research Program through the NRF funded by the Ministry of Education(NRF-2021R1A6A1A13044830, 30%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkyu Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2785 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, H., Park, M., Nam, G., Kim, J. (2025). LRSLAM: Low-Rank Representation of Signed Distance Fields in Dense Visual SLAM System. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15138. Springer, Cham. https://doi.org/10.1007/978-3-031-72989-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72989-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72988-1

  • Online ISBN: 978-3-031-72989-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics