Abstract
Image enhancement and restoration methods using adaptive 3D lookup tables (3D LUTs) have shown promising results with real-time inferencing. These methods directly transform input pixel values into enhanced ones by using interpolation operations with predicted 3D LUT values. However, it is still challenging to deal with locally different properties of images since most 3D LUT methods are simple color-to-color transforms. Although including spatial information in this transform can be a good solution, it can significantly increase the number of parameters and inference time. To address this issue, we propose an efficient spatial-aware image enhancement model that combines bilateral grids and 3D LUTs. Specifically, we transform bilateral grids into a spatial feature domain to incorporate spatial information in our 3D LUT model. To reduce inference time and save parameters, we use slicing operations in our network architecture instead of the long decoding path of the U-Net architecture used in most existing studies. Our model achieves state-of-the-art performance without increasing parameters and further reduces inference time, as demonstrated by extensive results. Codes are available at https://github.com/WontaeaeKim/LUTwithBGrid
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A Sharif, S., Naqvi, R.A., Biswas, M., Kim, S.: A two-stage deep network for high dynamic range image reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 550–559 (2021)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Akyüz, A.O., et al.: Deep joint deinterlacing and denoising for single shot dual-iso hdr reconstruction. IEEE Trans. Image Process. 29, 7511–7524 (2020)
Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR 2011, pp. 97–104. IEEE (2011)
Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)
Chen, J., Adams, A., Wadhwa, N., Hasinoff, S.W.: Bilateral guided upsampling. ACM Trans. Graph. (TOG) 35(6), 1–8 (2016)
Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. (TOG) 26(3), 103–es (2007)
Chen, X., Liu, Y., Zhang, Z., Qiao, Y., Dong, C.: Hdrunet: single image hdr reconstruction with denoising and dequantization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 354–363 (2021)
Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with gans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6306–6314 (2018)
Deng, Y., Loy, C.C., Tang, X.: Aesthetic-driven image enhancement by adversarial learning. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 870–878 (2018)
Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. (TOG) 36(4), 1–12 (2017)
Guo, C., Fan, L., Zhang, Q., Liu, H., Liu, K., Jiang, X.: Redistributing the precision and content in 3d-lut-based inverse tone-mapping for hdr/wcg display. In: Proceedings of the 20th ACM SIGGRAPH European Conference on Visual Media Production, pp. 1–10 (2023)
Hashimoto, N., Takamaeda-Yamazaki, S.: An fpga-based fully pipelined bilateral grid for real-time image denoising. In: 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), pp. 167–173. IEEE (2021)
He, J., Liu, Y., Qiao, Yu., Dong, C.: Conditional sequential modulation for efficient global image retouching. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 679–695. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_40
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. (TOG) 37(2), 1–17 (2018)
Huang, X., Zhang, Q., Feng, Y., Li, H., Wang, X., Wang, Q.: Hdr-nerf: high dynamic range neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18398–18408 (2022)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)
Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: Dslr-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3277–3285 (2017)
Jiang, Y., et al.: Enlightengan: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)
Jiang, Y., et al.: Ssh: A self-supervised framework for image harmonization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4832–4841 (2021)
Karaimer, H.C., Brown, M.S.: A software platform for manipulating the camera imaging pipeline. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I, pp. 429–444. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_26
Kim, H.-U., Koh, Y.J., Kim, C.-S.: PieNet: personalized image enhancement network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX, pp. 374–390. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_23
g Kim, S.Y., Oh, J., Kim, M.: Jsi-gan: gan-based joint super-resolution and inverse tone-mapping with pixel-wise task-specific filters for uhd hdr video. In: Proceedings of the AAAI Conference on Artificial Intelligencem, pp. 11287–11295 (2020)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
Le, P.H., Le, Q., Nguyen, R., Hua, B.S.: Single-image hdr reconstruction by multi-exposure generation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4063–4072 (2023)
Liang, J., Zeng, H., Cui, M., Xie, X., Zhang, L.: Ppr10k: A large-scale portrait photo retouching dataset with human-region mask and group-level consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 653–661 (2021)
Liu, C., Yang, H., Fu, J., Qian, X.: 4d lut: learnable context-aware 4d lookup table for image enhancement. IEEE Trans. Image Process. 32, 4742–4756 (2023)
Liu, Y.L., et al: Single-image hdr reconstruction by learning to reverse the camera pipeline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1651–1660 (2020)
Moran, S., Marza, P., McDonagh, S., Parisot, S., Slabaugh, G.: Deeplpf: deep local parametric filters for image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12826–12835 (2020)
Park, J., Lee, J.Y., Yoo, D., Kweon, I.S.: Distort-and-recover: color enhancement using deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5928–5936 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Song, Y., Qian, H., Du, X.: Starenhancer: learning real-time and style-aware image enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4126–4135 (2021)
Vandenberg, J.D., Andriani, S.: A survey on 3d-lut performance in 10-bit and 12-bit hdr bt. 2100 pq. In: SMPTE 2018, pp. 1–19. SMPTE (2018)
Wang, D., Zheng, Z., Ding, W., Jia, X.: Lgabl: Uhd multi-exposure image fusion via local and global aware bilateral learning. IEEE Transactions on Emerging Topics in Computational Intelligence (2023)
Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6849–6857 (2019)
Wang, T., et al.: Real-time image enhancer via learnable spatial-aware 3d lookup tables. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2471–2480 (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560 (2018)
Xu, B., Xu, Y., Yang, X., Jia, W., Guo, Y.: Bilateral grid learning for stereo matching networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12497–12506 (2021)
Xu, Q., Wang, L., Wang, Y., Sheng, W., Deng, X.: Deep bilateral learning for stereo image super-resolution. IEEE Signal Process. Lett. 28, 613–617 (2021)
Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y.: Automatic photo adjustment using deep neural networks. ACM Trans. Graph. (TOG) 35(2), 1–15 (2016)
Yang, C., Jin, M., Jia, X., Xu, Y., Chen, Y.: Adaint: learning adaptive intervals for 3d lookup tables on real-time image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17522–17531 (2022)
Yang, C., Jin, M., Xu, Y., Zhang, R., Chen, Y., Liu, H.: Seplut: separable image-adaptive lookup tables for real-time image enhancement. In: European Conference on Computer Vision (ECCV), pp. 201–217. Springer (2022). https://doi.org/10.1007/978-3-031-19797-0_12
Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3d lookup tables for high performance photo enhancement in real-time. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44(4), 2058–2073 (2022)
Zhang, F., Zeng, H., Zhang, T., Zhang, L.: Clut-net: learning adaptively compressed representations of 3dluts for lightweight image enhancement. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6493–6501 (2022)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: Proceedings of the 27th ACM International Conference On Multimedia, pp. 1632–1640 (2019)
Zhang, Z., Jiang, Y., Jiang, J., Wang, X., Luo, P., Gu, J.: Star: A structure-aware lightweight transformer for real-time image enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4106–4115 (2021)
Zheng, Z., Ren, W., Cao, X., Wang, T., Jia, X.: Ultra-high-definition image hdr reconstruction via collaborative bilateral learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4449–4458 (2021)
Zhou, Y., Li, C., Liang, J., Xu, T., Liu, X., Xu, J.: 4k-resolution photo exposure correction at 125 fps with\(\sim \) parameters. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1587–1597 (2024)
Acknowledgements
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) [NO.RS-2021-II211343, Artificial Intelligence Graduate School Program (Seoul National University)] and in part by the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University in 2024.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, W., Cho, N.I. (2025). Image-Adaptive 3D Lookup Tables for Real-Time Image Enhancement with Bilateral Grids. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15107. Springer, Cham. https://doi.org/10.1007/978-3-031-72967-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-72967-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72966-9
Online ISBN: 978-3-031-72967-6
eBook Packages: Computer ScienceComputer Science (R0)