Abstract
Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF). Recent works demonstrate that the frequency regularization of Positional Encoding (PE) can achieve promising results for few-shot NeRF. In this work, we reveal that there exists an inconsistency between the frequency regularization of PE and rendering loss. This prevents few-shot NeRF from synthesizing higher-quality novel views. To mitigate this inconsistency, we propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF. Specifically, we present a two-phase rendering supervision and an adaptive rendering loss weight learning strategy to align the frequency relationship between PE and 2D-pixel supervision. In this way, AR-NeRF can learn global structures better in the early training phase and adaptively learn local details throughout the training process. Extensive experiments show that our AR-NeRF achieves state-of-the-art performance on different datasets, including object-level and complex scenes. Our code will be available at https://github.com/GhiXu/AR-NeRF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A ray is a line emitted from a camera towards a pixel in that camera’s 2D view.
- 2.
MixNeRF uses AlexNet to evaluate LPIPS while other methods use VGG. For fair comparisons, we use its provided models to retest its performance by VGG.
- 3.
We retest the performance of FreeNeRF on DTU and LLFF by its provided models, and find that the results are slightly worse than the values reported in its paper.
References
Bai, J., Huang, L., Gong, W., Guo, J., Guo, Y.: Self-nerf: a self-training pipeline for few-shot neural radiance fields. arXiv preprint arXiv:2303.05775 (2023)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5855–5864 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Bradbury, J., et al.: Jax: composable transformations of python+ NumPy programs. Version 0.2 5, 14–24 (2018)
Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5799–5809 (2021)
Chen, A., et al.: MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 14124–14133 (2021)
Chen, D., Liu, Y., Huang, L., Wang, B., Pan, P.: GeoAug: data augmentation for few-shot nerf with geometry constraints. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13677, pp. 322–337. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_20
Chibane, J., Bansal, A., Lazova, V., Pons-Moll, G.: Stereo radiance fields (SRF): learning view synthesis for sparse views of novel scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7911–7920 (2021)
Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: fewer views and faster training for free. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12882–12891 (2022)
Esposito, S., et al.: GeoGen: geometry-aware generative modeling via signed distance functions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7479–7488 (2024)
Fu, Q., Xu, Q., Ong, Y.S., Tao, W.: Geo-Neus: geometry-consistent neural implicit surfaces learning for multi-view reconstruction. In: Advances in Neural Information Processing Systems, vol. 35, pp. 3403–3416 (2022)
Jain, A., Tancik, M., Abbeel, P.: Putting NeRF on a diet: semantically consistent few-shot view synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5885–5894 (2021)
Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413 (2014)
Johari, M.M., Lepoittevin, Y., Fleuret, F.: GeoNeRF: generalizing nerf with geometry priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 18365–18375 (2022)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Kim, M., Seo, S., Han, B.: InfoNeRF: ray entropy minimization for few-shot neural volume rendering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12912–12921 (2022)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kwak, M., Song, J., Kim, S.: GecoNeRF: few-shot neural radiance fields via geometric consistency. arXiv preprint arXiv:2301.10941 (2023)
Lin, C.H., et al.: Magic3D: high-resolution text-to-3D content creation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 300–309 (2023)
Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: Nerf in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)
Max, N.: Optical models for direct volume rendering. IEEE Trans. Visual Comput. Graph. 1(2), 99–108 (1995)
Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: RegNeRF: regularizing neural radiance fields for view synthesis from sparse inputs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5480–5490 (2022)
Pan, X., Lai, Z., Song, S., Huang, G.: ActiveNeRF: learning where to see with uncertainty estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 230–246. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_14
Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: DreamFusion: text-to-3D using 2D diffusion. arXiv preprint arXiv:2209.14988 (2022)
Ren, C., Xu, Q., Zhang, S., Yang, J.: Hierarchical prior mining for non-local multi-view stereo. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3611–3620 (2023)
Roessle, B., Barron, J.T., Mildenhall, B., Srinivasan, P.P., Nießner, M.: Dense depth priors for neural radiance fields from sparse input views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12892–12901 (2022)
Seo, S., Chang, Y., Kwak, N.: FlipNeRF: flipped reflection rays for few-shot novel view synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 22883–22893 (2023)
Seo, S., Han, D., Chang, Y., Kwak, N.: MixNeRF: modeling a ray with mixture density for novel view synthesis from sparse inputs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 20659–20668 (2023)
Shen, J., Agudo, A., Moreno-Noguer, F., Ruiz, A.: Conditional-flow nerf: accurate 3D modelling with reliable uncertainty quantification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13663, pp. 540–557. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20062-5_31
Shen, J., Ruiz, A., Agudo, A., Moreno-Noguer, F.: Stochastic neural radiance fields: quantifying uncertainty in implicit 3D representations. In: Proceedings of the International Conference on 3D Vision, pp. 972–981. IEEE (2021)
Su, W., Zhang, C., Xu, Q., Tao, W.: PSDF: prior-driven neural implicit surface learning for multi-view reconstruction. arXiv preprint arXiv:2401.12751 (2024)
Sun, X., Xu, Q., Yang, X., Zang, Y., Wang, C.: Global and hierarchical geometry consistency priors for few-shot nerfs in indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 20530–20539 (2024)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7537–7547 (2020)
Truong, P., Rakotosaona, M.J., Manhardt, F., Tombari, F.: SPARF: neural radiance fields from sparse and noisy poses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4190–4200 (2023)
Uy, M.A., Martin-Brualla, R., Guibas, L., Li, K.: SCADE: NeRFs from space carving with ambiguity-aware depth estimates. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 16518–16527 (2023)
Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: 2022 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5481–5490. IEEE (2022)
Wang, G., Chen, Z., Loy, C.C., Liu, Z.: SparseNeRF: distilling depth ranking for few-shot novel view synthesis. arXiv preprint arXiv:2303.16196 (2023)
Wang, H., Xu, Q., Chen, H., Ma, R.: PGAHum: prior-guided geometry and appearance learning for high-fidelity animatable human reconstruction. arXiv preprint arXiv:2404.13862 (2024)
Wang, H., Du, X., Li, J., Yeh, R.A., Shakhnarovich, G.: Score Jacobian chaining: lifting pretrained 2D diffusion models for 3d generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12619–12629 (2023)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: Advances in Neural Information Processing Systems (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wu, R., et al.: Reconfusion: 3D reconstruction with diffusion priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 21551–21561 (2024)
Wynn, J., Turmukhambetov, D.: DiffusioNeRF: regularizing neural radiance fields with denoising diffusion models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4180–4189 (2023)
Xu, J., et al.: PR-Neus: a prior-based residual learning paradigm for fast multi-view neural surface reconstruction. arXiv preprint arXiv:2312.11577 (2023)
Xu, Q., Kong, W., Tao, W., Pollefeys, M.: Multi-scale geometric consistency guided and planar prior assisted multi-view stereo. IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 4945–4963 (2022)
Xu, Q., Tao, W.: Multi-scale geometric consistency guided multi-view stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5483–5492 (2019)
Yang, J., Pavone, M., Wang, Y.: FreeNeRF: improving few-shot neural rendering with free frequency regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8254–8263 (2023)
Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. In: Advances in Neural Information Processing Systems, vol. 34, pp. 4805–4815 (2021)
Yi, X., Wu, Z., Xu, Q., Zhou, P., Lim, J.H., Zhang, H.: Diffusion time-step curriculum for one image to 3D generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9948–9958 (2024)
Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Acknowledgements
This research is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG2-RP-2021-022). Xuanyu Yi is supported by the Agency for Science, Technology AND Research, Singapore.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Q., Yi, X., Xu, J., Tao, W., Ong, YS., Zhang, H. (2025). Few-Shot NeRF by Adaptive Rendering Loss Regularization. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15124. Springer, Cham. https://doi.org/10.1007/978-3-031-72848-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-72848-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72847-1
Online ISBN: 978-3-031-72848-8
eBook Packages: Computer ScienceComputer Science (R0)