Abstract
Gait recognition is a crucial biometric identification technique. Camera-based gait recognition has been widely applied in both research and industrial fields. LiDAR-based gait recognition has also begun to evolve most recently, due to the provision of 3D structural information. However, in certain applications, cameras fail to recognize persons, such as in low-light environments and long-distance recognition scenarios, where LiDARs work well. On the other hand, the deployment cost and complexity of LiDAR systems limit its wider application. Therefore, it is essential to consider cross-modality gait recognition between cameras and LiDARs for a broader range of applications. In this work, we propose the first cross-modality gait recognition framework between Camera and LiDAR, namely CL-Gait. It employs a two-stream network for feature embedding of both modalities. This poses a challenging recognition task due to the inherent matching between 3D and 2D data, exhibiting significant modality discrepancy. To align the feature spaces of the two modalities, i.e., camera silhouettes and LiDAR points, we propose a contrastive pre-training strategy to mitigate modality discrepancy. To make up for the absence of paired camera-LiDAR data for pre-training, we also introduce a strategy for generating data on a large scale. This strategy utilizes monocular depth estimated from single RGB images and virtual cameras to generate pseudo point clouds for contrastive pre-training. Extensive experiments show that the cross-modality gait recognition is very challenging but still contains potential and feasibility with our proposed model and pre-training strategy. To the best of our knowledge, this is the first work to address cross-modality gait recognition. The code and dataset are available at https://github.com/GWxuan/CL-Gait.
W. Guo and Y. Liang—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)
Chao, H., He, Y., Zhang, J., Feng, J.: GaitSet: regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8126–8133 (2019)
Choi, S., Lee, S., Kim, Y., Kim, T., Kim, C.: Hi-CMD: hierarchical cross-modality disentanglement for visible-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10257–10266 (2020)
Dai, P., Ji, R., Wang, H., Wu, Q., Huang, Y.: Cross-modality person re-identification with generative adversarial training. In: IJCAI, vol. 1, p. 6 (2018)
Fan, C., Liang, J., Shen, C., Hou, S., Huang, Y., Yu, S.: OpenGait: revisiting gait recognition towards better practicality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9707–9716 (2023)
Fan, C., et al.: GaitPart: temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14225–14233 (2020)
Feng, Z., Lai, J., Xie, X.: Learning modality-specific representations for visible-infrared person re-identification. IEEE Trans. Image Process. 29, 579–590 (2019)
Gong, K., Liang, X., Zhang, D., Shen, X., Lin, L.: Look into person: self-supervised structure-sensitive learning and a new benchmark for human parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 932–940 (2017)
Guo, W., et al.: LiDAR-based person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17437–17447 (2023)
Hao, Y., Wang, N., Li, J., Gao, X.: HSME: hypersphere manifold embedding for visible thermal person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8385–8392 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, R., Wu, X., Sun, Z., Tan, T.: Learning invariant deep representation for NIR-VIS face recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Jia, C., el al: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)
Li, X., Makihara, Y., Xu, C., Yagi, Y., Yu, S., Ren, M.: End-to-end model-based gait recognition. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12624, pp. 3–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69535-4_1
Liang, J., Fan, C., Hou, S., Shen, C., Huang, Y., Yu, S.: GaitEdge: beyond plain end-to-end gait recognition for better practicality. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13665, pp. 375–390. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20065-6_22
Liao, R., Yu, S., An, W., Huang, Y.: A model-based gait recognition method with body pose and human prior knowledge. Pattern Recogn. 98, 107069 (2020)
Lin, B., Liu, Y., Zhang, S.: GaitMask: mask-based model for gait recognition. In: BMVC, pp. 1–12 (2021)
Lin, B., Zhang, S., Wang, M., Li, L., Yu, X.: GaitGL: learning discriminative global-local feature representations for gait recognition. arXiv preprint arXiv:2208.01380 (2022)
Lin, X., et al.: Learning modal-invariant and temporal-memory for video-based visible-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20973–20982 (2022)
Ling, Y., Zhong, Z., Luo, Z., Rota, P., Li, S., Sebe, N.: Class-aware modality mix and center-guided metric learning for visible-thermal person re-identification. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 889–897 (2020)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 851–866 (2023)
Lu, Y., et al.: Cross-modality person re-identification with shared-specific feature transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13379–13389 (2020)
Nguyen, D.T., Hong, H.G., Kim, K.W., Park, K.R.: Person recognition system based on a combination of body images from visible light and thermal cameras. Sensors 17(3), 605 (2017)
Park, H., Lee, S., Lee, J., Ham, B.: Learning by aligning: visible-infrared person re-identification using cross-modal correspondences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12046–12055 (2021)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)
Sepas-Moghaddam, A., Etemad, A.: Deep gait recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 264–284 (2022)
Shen, C., Fan, C., Wu, W., Wang, R., Huang, G.Q., Yu, S.: LidarGait: benchmarking 3D gait recognition with point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1054–1063 (2023)
Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 10, 1–14 (2018)
Teepe, T., Khan, A., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G.: GaitGraph: graph convolutional network for skeleton-based gait recognition. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2314–2318. IEEE (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, C., Zhang, J., Pu, J., Yuan, X., Wang, L.: Chrono-gait image: a novel temporal template for gait recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 257–270. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_19
Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-LiDAR from visual depth estimation: bridging the gap in 3D object detection for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8445–8453 (2019)
Wu, A., Zheng, W.S., Yu, H.X., Gong, S., Lai, J.: RGB-infrared cross-modality person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5380–5389 (2017)
Yang, J., et al.: Vision-language pre-training with triple contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15671–15680 (2022)
Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: unleashing the power of large-scale unlabeled data. arXiv preprint arXiv:2401.10891 (2024)
Ye, M., Lan, X., Leng, Q.: Modality-aware collaborative learning for visible thermal person re-identification. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 347–355 (2019)
Ye, M., Lan, X., Leng, Q., Shen, J.: Cross-modality person re-identification via modality-aware collaborative ensemble learning. IEEE Trans. Image Process. 29, 9387–9399 (2020)
Ye, M., Shen, J., J. Crandall, D., Shao, L., Luo, J.: Dynamic dual-attentive aggregation learning for visible-infrared person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 229–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_14
Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 441–444. IEEE (2006)
Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)
Acknowledgement
This work is supported by the National Key Research and Development Program of China under Grant (2018AAA0102803).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Guo, W., Liang, Y., Pan, Z., Xi, Z., Feng, J., Zhou, J. (2025). Camera-LiDAR Cross-Modality Gait Recognition. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15092. Springer, Cham. https://doi.org/10.1007/978-3-031-72754-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-72754-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72753-5
Online ISBN: 978-3-031-72754-2
eBook Packages: Computer ScienceComputer Science (R0)