Abstract
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images. These concepts, termed “implicit concepts”, can be unintentionally learned during training and then be generated uncontrollably during inference. Existing removal methods still struggle to eliminate implicit concepts primarily due to their dependency on the model’s ability to recognize concepts it actually can not discern. To address this, we utilize the intrinsic geometric characteristics of implicit concepts and present Geom-Erasing, a novel concept removal method based on geometric-driven control. Specifically, once an unwanted implicit concept is identified, we integrate the existence and geometric information of the concept into the text prompts with the help of an accessible classifier or detector model. Subsequently, the model is optimized to identify and disentangle this information, which is then adopted as negative prompts during generation. Moreover, we introduce the Implicit Concept Dataset (ICD), a novel image-text dataset imbued with three typical implicit concepts (QR codes, watermarks, and text), reflecting real-life situations where implicit concepts are easily injected. Geom-Erasing effectively mitigates the generation of implicit concepts, achieving state-of-the-art results on the Inappropriate Image Prompts (I2P) and our challenging Implicit Concept Dataset (ICD) benchmarks.
Z. Liu and K. Chen—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balaji, Y., et al.: eDiffi: text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022)
Birhane, A., Prabhu, V.U., Kahembwe, E.: Multimodal datasets: misogyny, pornography, and malignant stereotypes. arXiv preprint arXiv:2110.01963 (2021)
Brack, M., Friedrich, F., Hintersdorf, D., Struppek, L., Schramowski, P., Kersting, K.: SEGA: instructing diffusion using semantic dimensions. arXiv preprint arXiv:2301.12247 (2023)
Brack, M., Friedrich, F., Schramowski, P., Kersting, K.: Mitigating inappropriateness in image generation: can there be value in reflecting the world’s ugliness? arXiv preprint arXiv:2305.18398 (2023)
Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12M: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: CVPR (2021)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: NeurIPS (2021)
Gandikota, R., Materzynska, J., Fiotto-Kaufman, J., Bau, D.: Erasing concepts from diffusion models. arXiv preprint arXiv:2303.07345 (2023)
Gao, R., et al.: MagicDrive: street view generation with diverse 3D geometry control. arXiv preprint arXiv:2310.02601 (2023)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NeurIPS (2017)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)
Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)
Kingma, D., Salimans, T., Poole, B., Ho, J.: Variational diffusion models. In: NeurIPS (2021)
Kumari, N., Zhang, B., Wang, S.Y., Shechtman, E., Zhang, R., Zhu, J.Y.: Ablating concepts in text-to-image diffusion models. In: ICCV (2023)
Lee, T., et al.: Holistic evaluation of text-to-image models. arXiv preprint arXiv:2311.04287 (2023)
Li, P., et al.: TrackDiffusion: multi-object tracking data generation via diffusion models. arXiv preprint arXiv:2312.00651 (2023)
Nichol, A.: DALL.E 2 pre-training mitigations (2022). https://openai.com/research/dall-e-2-pre-training-mitigations
Pinkney, J.N.M.: Pokemon blip captions (2022). https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: NeurIPS (2022)
Schramowski, P., Brack, M., Deiseroth, B., Kersting, K.: Safe latent diffusion: mitigating inappropriate degeneration in diffusion models. In: CVPR (2023)
Schuhmann, C., et al.: LAION-400M: open dataset of CLIP-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114 (2021)
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML (2015)
Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456 (2020)
Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: NeurIPS (2017)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
Yang, Y., Gui, D., Yuan, Y., Ding, H., Hu, H., Chen, K.: GlyphControl: glyph conditional control for visual text generation. arXiv preprint arXiv:2305.18259 (2023)
Zhang, E., Wang, K., Xu, X., Wang, Z., Shi, H.: Forget-me-not: learning to forget in text-to-image diffusion models. arXiv preprint arXiv:2211.08332 (2023)
Zhang, Y., Hooi, B.: HiPA: enabling one-step text-to-image diffusion models via high-frequency-promoting adaptation. arXiv preprint arXiv:2311.18158 (2023)
Zhang, Y., Zhou, D., Hooi, B., Wang, K., Feng, J.: Expanding small-scale datasets with guided imagination. In: NeurIPS (2023)
Acknowledgment
We gratefully acknowledge the support of MindSpore, CANN (Compute Architecture for Neural Networks) and Ascend AI Processor used for this research. This work was partially supported by the Research Grants Council of the Hong Kong Special Administrative Region (Grants C7004-22G-1 and 16202523). This research has been made possible by funding support from the Research Grants Council of Hong Kong through the Research Impact Fund project R6003-21.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Z. et al. (2025). Implicit Concept Removal of Diffusion Models. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15079. Springer, Cham. https://doi.org/10.1007/978-3-031-72664-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-72664-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72663-7
Online ISBN: 978-3-031-72664-4
eBook Packages: Computer ScienceComputer Science (R0)