NeuroConText: Contrastive Text-to-Brain Mapping for Neuroscientific Literature | SpringerLink
Skip to main content

NeuroConText: Contrastive Text-to-Brain Mapping for Neuroscientific Literature

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Neuroscience faces challenges in reliability due to limited statistical power, reproducibility issues, and inconsistent terminology. To address these challenges, we introduce NeuroConText, the first brain meta-analysis model that uses a contrastive approach to enhance the association between text data and brain activation coordinates reported in 20K neuroscientific articles from PubMed Central. NeuroConText integrates the capabilities of recent large language models (LLMs) rather than traditional bag-of-words methods, to better capture the text semantic, and improve the association with brain activation. It is adapted to processing neuroscientific text regardless of length and generalizes well across various textual content-titles, abstracts, and full-body. Our experiments show NeuroConText significantly outperforms state-of-the-art methods with a threefold increase in linking text to brain activations in terms of recall@10. NeuroConText also allows decoding brain images from latent text representations, successfully maintaining the quality of brain image reconstruction compared to the state-of-the-art.

R. Meudec, F. Ghayem—Equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Black, S., Leo, G., Wang, P., Leahy, C., Biderman, S.: Gpt-neo: Large scale autoregressive language modeling with mesh-tensorflow. Zenodo 1.0 (2021)

    Google Scholar 

  2. Button, K.S., Ioannidis, J.P., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S., Munafò, M.R.: Power failure: why small sample size undermines the reliability of neuroscience. Nature reviews neuroscience 14(5), 365–376 (2013)

    Article  Google Scholar 

  3. Carp, J.: The secret lives of experiments: methods reporting in the fmri literature. Neuroimage 63(1), 289–300 (2012)

    Article  Google Scholar 

  4. Dadi, K., Varoquaux, G., Machlouzarides-Shalit, A., Gorgolewski, K.J., Wassermann, D., Thirion, B., Mensch, A.: Fine-grain atlases of functional modes for fmri analysis. NeuroImage 221, 117126 (2020)

    Article  Google Scholar 

  5. Dice, L.R.: Measures of the Amount of Ecologic Association Between Species. Ecology 26(3), 297–302 (1945). https://doi.org/10.2307/1932409, https://www.jstor.org/stable/1932409

  6. Dockès, J., Poldrack, R.A., Primet, R., Gözükan, H., Yarkoni, T., Suchanek, F., Thirion, B., Varoquaux, G.: Neuroquery, comprehensive meta-analysis of human brain mapping. Elife 9, e53385 (2020)

    Article  Google Scholar 

  7. Fox, P.T., Parsons, L.M., Lancaster, J.L.: Beyond the single study: function/location metanalysis in cognitive neuroimaging. Current opinion in neurobiology 8(2), 178–187 (1998)

    Article  Google Scholar 

  8. Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N., et al.: The pile: An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027 (2020)

  9. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 9729–9738 (2020)

    Google Scholar 

  10. Horn, J.D.V., Grafton, S.T., Rockmore, D., Gazzaniga, M.S.: Sharing neuroimaging studies of human cognition. Nature neuroscience 7(5), 473–481 (2004)

    Article  Google Scholar 

  11. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., Casas, D.d.l., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., et al.: Mistral 7b. arXiv preprint arXiv:2310.06825 (2023)

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Laird, A.R., Lancaster, J.J., Fox, P.T.: Brainmap: the social evolution of a human brain mapping database. Neuroinformatics 3, 65–77 (2005)

    Article  Google Scholar 

  14. Menuet, R., Meudec, R., Dockès, J., Varoquaux, G., Thirion, B.: Comprehensive decoding mental processes from web repositories of functional brain images. Sci. Rep. 12(1),  7050 (Apr 2022)

    Article  Google Scholar 

  15. Minzenberg, M.J., Laird, A.R., Thelen, S., Carter, C.S., Glahn, D.C.: Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of general psychiatry 66(8), 811–822 (2009)

    Article  Google Scholar 

  16. Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.M., Malave, V.L., Mason, R.A., Just, M.A.: Predicting human brain activity associated with the meanings of nouns. science 320(5880), 1191–1195 (2008)

    Google Scholar 

  17. Ngo, G.H., Nguyen, M., Chen, N.F., Sabuncu, M.R.: Text2brain: Synthesis of brain activation maps from free-form text query. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VII 24. pp. 605–614. Springer (2021)

    Google Scholar 

  18. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  19. Pinho, A.L., Amadon, A., Ruest, T., Fabre, M., Dohmatob, E., Denghien, I., Ginisty, C., Becuwe-Desmidt, S., Roger, S., Laurier, L., Joly-Testault, V., Médiouni-Cloarec, G., Doublé, C., Martins, B., Pinel, P., Eger, E., Varoquaux, G., Pallier, C., Dehaene, S., Hertz-Pannier, L., Thirion, B.: Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping. Scientific Data 5, 180105 (Jun 2018).https://doi.org/10.1038/sdata.2018.105

    Article  Google Scholar 

  20. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language supervision. In: International conference on machine learning. pp. 8748–8763. PMLR (2021)

    Google Scholar 

  21. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information processing & management 24(5), 513–523 (1988)

    Article  Google Scholar 

  22. Thomas, A.W., Ré, C., Poldrack, R.A.: Self-supervised learning of brain dynamics from broad neuroimaging data. arXiv preprint arXiv:2206.11417 (2022)

  23. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16. pp. 776–794. Springer (2020)

    Google Scholar 

  24. Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D.: Large-scale automated synthesis of human functional neuroimaging data. Nature methods 8(8), 665–670 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the KARAIB AI chair (ANR-20-CHIA-0025-01), the ANR-22-PESN-0012 France 2030 program, and the HORIZON-INFRA-2022-SERV-B-01 EBRAINS 2.0 infrastructure project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateme Ghayem .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 542 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meudec, R., Ghayem, F., Dockès, J., Wassermann, D., Thirion, B. (2024). NeuroConText: Contrastive Text-to-Brain Mapping for Neuroscientific Literature. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15003. Springer, Cham. https://doi.org/10.1007/978-3-031-72384-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72384-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72383-4

  • Online ISBN: 978-3-031-72384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics