RIP-AV: Joint Representative Instance Pre-training with Context Aware Network for Retinal Artery/Vein Segmentation | SpringerLink
Skip to main content

RIP-AV: Joint Representative Instance Pre-training with Context Aware Network for Retinal Artery/Vein Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Accurate deep learning-based segmentation of retinal arteries and veins (A/V) enables improved diagnosis, monitoring, and management of ocular fundus diseases and systemic diseases. However, existing resized and patch-based algorithms face challenges with redundancy, overlooking thin vessels, and underperforming in low-contrast edge areas of the retinal images, due to imbalanced background-to-A/V ratios and limited contexts. Here, we have developed a novel deep learning framework for retinal A/V segmentation, named RIP-AV, which integrates a Representative Instance Pre-training (RIP) task with a context-aware network for retinal A/V segmentation for the first time. Initially, we develop a direct yet effective algorithm for vascular patch-pair selection (PPS) and then introduce a RIP task, formulated as a multi-label problem, aiming at enhancing the network's capability to learn latent arteriovenous features from diverse spatial locations across vascular patches. Subsequently, in the training phase, we introduce two novel modules: Patch Context Fusion (PCF) module and Distance Aware (DA) module. They are designed to improve the discriminability and continuity of thin vessels, especially in low-contrast edge areas, by leveraging the relationship between vascular patches and their surrounding contexts cooperatively and complementarily. The effectiveness of RIP-AV has been validated on three publicly available retinal datasets: AV-DRIVE, LES-AV, and HRF, demonstrating remarkable accuracies of 0.970, 0.967, and 0.981, respectively, thereby outperforming existing state-of-the-art methods. Notably, our method achieves a significant 1.7% improvement in accuracy on the HRF dataset, particularly enhancing the segmentation of thin edge arteries and veins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Safi, H., Safi, S., Hafezi-Moghadam, A., Ahmadieh, H.: Early detection of diabetic retinopathy. Surv. Ophthalmol. 63(5), 601–608 (2018)

    Article  Google Scholar 

  2. Tapp, R.J., et al.: Associations of retinal microvascular diameters and tortuosity with blood pressure and arterial stiffness: United Kingdom biobank. Hypertension 74(6), 1383–1390 (2019)

    Article  Google Scholar 

  3. Zekavat, S.M., et al.: Deep learning of the retina enables phenome- and genome-wide analyses of the microvasculature. Circulation 145(2), 134–150 (2022)

    Article  Google Scholar 

  4. Fogel-Levin, M., et al.: Advanced retinal imaging and applications for clinical practice: a consensus review. Surv. Ophthalmol. 67(5), 1373–1390 (2022)

    Article  Google Scholar 

  5. Galdran, A., Meyer, M., Costa, P., Campilho, A.: Uncertainty-aware artery/vein classification on retinal images. In: ISBI, pp. 556–560 (2019)

    Google Scholar 

  6. Galdran, A., et al.: The little W-net that could: state-of-the-art retinal vessel segmentation with minimalistic models. arXiv preprint arXiv:2009.01907 (2020)

  7. Li, L., Verma, M., Nakashima, Y., Kawasaki, R., Nagahara, H.: Joint learning of vessel segmentation and artery/vein classification with post-processing. In: Medical Imaging with Deep Learning, pp. 440–453 (2020)

    Google Scholar 

  8. Zhou, Y., et al.: Learning to address intra-segment misclassification in retinal imaging. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 482–492. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_46

    Chapter  Google Scholar 

  9. Girard, F., Kavalec, C., Cheriet, F.: Joint segmentation and classification of retinal arteries/veins from fundus images. Artif. Intell. Med. 94, 96–109 (2019)

    Article  Google Scholar 

  10. Ma, W., Yu, S., Ma, K., Wang, J., Ding, X., Zheng, Y.: Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification. In: Shen, D., et al. (eds.) MICCAI 2019.LNCS, vol. 11764, pp. 769–778. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_85

  11. Chen, W., et al.: TR-GAN: topology ranking GAN with triplet loss for retinal artery/vein classification. In: Martel, A.L., et al. (eds.) MICCAI 2020, LNCS, vol. 12265, pp. 616–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_59

    Chapter  Google Scholar 

  12. Hu, J., et al.: Automatic artery/vein classification using a vessel-constraint network for multicenter fundus images. Front. Cell Dev. Biol. 9, 659941 (2021)

    Article  Google Scholar 

  13. Chen, W., et al.: TW-GAN: topology and width aware GAN for retinal artery/vein classification. Med. Image Anal. 77, 102340 (2022)

    Article  Google Scholar 

  14. Luo, S., Heng, Z., Pagnucco, M., Song, Y.: Two-stage topological refinement network for retinal artery/vein classification. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–4 (2022)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, vol. 27 (2014)

    Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  18. Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: CVPR, pp. 11966–11976 (2022)

    Google Scholar 

  19. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 5967–5976 (2017)

    Google Scholar 

  20. Qu, Z., Zhuo, L., Cao, J., Li, X., Yin, H., Wang, Z.: TP-net: two-path network for retinal vessel segmentation. JBHI 27(4), 1979–1990 (2023)

    Google Scholar 

  21. Maurer J., C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. TPAMI 25(2), 265–270 (2003)

    Google Scholar 

  22. Zhang, S., Song, L., Gao, C., Sang, N.: GLNet: global local network for weakly supervised action localization. IEEE Trans. Mult. 22(10), 2610–2622 (2020)

    Article  Google Scholar 

  23. Li, Q., Yang, W., Liu, W., Yu, Y., He, S.: From Contexts to Locality: Ultra-high Resolution Image Segmentation via Locality-aware Contextual Correlation. In: ICCV, pp. 7232–7241 (2021)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  25. Hu, Q., Abràmoff, M.D., Garvin, M.K.: Automated Separation of Binary Overlapping Trees in Low-Contrast Color Retinal Images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, LNCS, vol. 8150, pp. 436–443. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_54

  26. Odstrcilik, J., et al.: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Pro. 7(4), 373–383 (2013)

    Article  MathSciNet  Google Scholar 

  27. Orlando, J.I., Barbosa Breda, J., van Keer, K., Blaschko, M.B., Blanco, P.J., Bulant, C.A.: Towards a glaucoma risk index based on simulated hemodynamics from fundus images. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds) MICCAI 2018, LNCS, vol.11071, pp. 65–73. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_8

  28. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  29. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  30. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (2008)

    Google Scholar 

  31. Morano, J., et al.: Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images. Artif. Intell. Med. 118 (2021)

    Google Scholar 

  32. Karlsson, R.A., Sveinn H.H.: Artery vein classification in fundus images using serially connected U-Nets. Comput. Meth. Programs Biomed. 216 (2022)

    Google Scholar 

  33. Zhao, A.D., et al.: Optimization of retinal artery/vein classification based on vascular topology. Biomed. Signal Process. Control 88 (2024)

    Google Scholar 

  34. Wang, C., Xu, R., Xu, S., Meng, W., Zhang, X.: DA-Net: dual branch transformer and adaptive strip upsampling for retinal vessels segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 528–538. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_51

    Chapter  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (82172882) and supported by Biomedical Big Data Intelligent Computing Center of Oujiang Lab.

Funding

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, W. et al. (2024). RIP-AV: Joint Representative Instance Pre-training with Context Aware Network for Retinal Artery/Vein Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics