Federated Adversarial Learning for Robust Autonomous Landing Runway Detection | SpringerLink
Skip to main content

Federated Adversarial Learning for Robust Autonomous Landing Runway Detection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15021))

Included in the following conference series:

  • 302 Accesses

Abstract

As the development of deep learning techniques in autonomous landing systems continues to grow, one of the major challenges is trust and security in the face of possible adversarial attacks. In this paper, we propose a federated adversarial learning-based framework to detect landing runways using paired data comprising of clean local data and its adversarial version. Firstly, the local model is pre-trained on a large-scale lane detection dataset. Then, instead of exploiting large instance-adaptive models, we resort to a parameter-efficient fine-tuning method known as scale and shift deep features (SSF), upon the pre-trained model. Secondly, in each SSF layer, distributions of clean local data and its adversarial version are disentangled for accurate statistics estimation. To the best of our knowledge, this marks the first instance of federated learning work that address the adversarial sample problem in landing runway detection. Our experimental evaluations over both synthesis and real images of Landing Approach Runway Detection (LARD) dataset consistently demonstrate good performance of the proposed federated adversarial learning and robust to adversarial attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, P., Yang, Z., Chen, X., Xu, H.: A transformer-based method for UAV-view geo-localization. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds.) ICANN 2023. LNCS, vol. 14259, pp. 332–344. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44223-0_27

    Chapter  Google Scholar 

  2. Pang, X., Zhao, N., Tang, J., Wu, C., Niyato, D., Wong, K.: IRS-assisted secure UAV transmission via joint trajectory and beamforming design. IEEE Trans. Commun. 70(2), 1140–1152 (2022)

    Article  Google Scholar 

  3. Ajith, B., Adlinge, S.D., Dinesh, S., Rajeev, U.P., Padmakumar, E.S.: Robust method to detect and track the runway during aircraft landing using colour segmentation and runway features. In: Proceedings of International Conference on Trends in Electronics and Informatics (ICOEI) (2019)

    Google Scholar 

  4. Ducoffe, M., et al.: LARD - landing approach runway detection - dataset for vision based landing, arXiv preprint arXiv: 2304.09938 (2023)

  5. Akbar, J., Shahzad, M., Malik, M.I., Ul-Hasan, A., Shafait, F.: Runway detection and localization in aerial images using deep learning. In: Proceedings of Digital Image Computing: Techniques and Applications (DICTA) (2019)

    Google Scholar 

  6. Drougard, N., Cassaro, M.: Implementation of runway detection systems using machine learning. In: National Higher French Institute of Aeronautics and Space (2022)

    Google Scholar 

  7. Li, Y., Angelov, P., Suri, N.: Adversarial attack detection via fuzzy predictions. In: Proceedings of IEEE Symposium Series on Computational Intelligence (SSCI) (2023)

    Google Scholar 

  8. Tao, J., Gao, Z., Guo, Z.: Training vision transformers in federated learning with limited edge-device resources. Electronics 11(17), 2638 (2022)

    Article  Google Scholar 

  9. Qu, L., et al.: Rethinking architecture design for tackling data heterogeneity in federated learning. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  10. Zou, Q., Jiang, Q.D.H., Yue, Y., Chen, L., Wang, Q.: Robust lane detection from continuous driving scenes using deep neural networks. IEEE Trans. Veh. Technol. 69(1), 41–54 (2020)

    Article  Google Scholar 

  11. Garlin, D., Naidu, V.: Detection of airport runway edges using line detection techniques. Core (2011)

    Google Scholar 

  12. Hua, Z., Bian, Z., Li, J.: Airport detection-based cosaliency on remote sensing images. Math. Probl. Eng. 2021(1), 1–17 (2021)

    Google Scholar 

  13. Kordos, D., Krzaczkowski, P., Zesławska, E.: Vision system measuring the position of an aircraft in relation to the runway during landing approach. Math. Probl. Eng. 23(3), 1560 (2023)

    Google Scholar 

  14. Amit, R.A., Mohan, C.K.: A robust airport runway detection network based on R-CNN using remote sensing images. IEEE Aerosp. Electron. Syst. Mag. 36(11), 4–20 (2021)

    Article  Google Scholar 

  15. Ma, X., et al.: Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn. 110, 107332 (2021)

    Article  Google Scholar 

  16. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Angelov, P., Suri, N.: Domain generalization and feature fusion for cross-domain imperceptible adversarial attack detection. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN) (2023)

    Google Scholar 

  18. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Proceedings of International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  19. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: Proceedings of International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  20. Luo, C., Lin, Q., Xie, W., Wu, B., Xie, J., Shen, L.: Frequency-driven imperceptible adversarial attack on semantic similarity. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  21. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy (2017)

    Google Scholar 

  22. Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  23. Pellicer, A.L., Li, Y., Angelov, P.: PUDD: towards robust multi-modal prototype-based deepfake detection. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  24. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world, arXiv preprint arXiv:1607.02533 (2016)

  25. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: IEEE Symposium on Security and Privacy (2016)

    Google Scholar 

  26. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics (ICAIS) (2017)

    Google Scholar 

  27. Bonawitz, K., Kairouz, P., McMahan, B., Ramage, D.: Federated learning and privacy: building privacy-preserving systems for machine learning and data science on decentralized data. ACM Queue 19(5), 87–114 (2021)

    Article  Google Scholar 

  28. Truong, N., Sun, K., Wang, S., Guitton, F., Guo, Y.: Privacy preservation in federated learning: an insightful survey from the GDPR perspective. Comput. Secur. 110, 102402 (2021)

    Article  Google Scholar 

  29. Nair, A.K., Raj, E.D., Sahoo, J.: A robust analysis of adversarial attacks on federated learning environments. Comput. Stand. Interfaces 86, 103723 (2023)

    Article  Google Scholar 

  30. Shi, L., et al.: Data poisoning attacks on federated learning by using adversarial samples. In: International Conference on Computer Engineering and Artificial Intelligence (ICCEAI) (2022)

    Google Scholar 

  31. Queyrut, S., Schiavoni, V., Felber, P.: Mitigating adversarial attacks in federated learning with trusted execution environments. In: International Conference on Distributed Computing Systems (ICDCS) (2023)

    Google Scholar 

  32. Shu, Y., Kou, Z., Cao, Z., Wang, J., Long, M.: Zoo-tuning: adaptive transfer from a zoo of models. In: Proceedings of International Conference on Machine Learning (ICML) (2021)

    Google Scholar 

  33. Kim, W., Son, B., Kim, I.: ViLT: vision- and-language transformer without convolution or region supervision. In: Proceedings of International Conference on Machine Learning (ICML) (2021)

    Google Scholar 

  34. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: Proceedings of International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  35. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding YOLO series in 2021, arXiv preprint arXiv:2107.08430 (2021)

  36. Lian, D., Zhou, D., Feng, J., Wang, X.: Scaling & shifting your features: a new baseline for efficient model tuning. In: Proceedings of Advances in Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  37. Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A.L., Le, Q.V.: Adversarial examples improve image recognition. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  38. Li, Y., Angelov, P., Suri, N.: Rethinking self-supervised learning for cross-domain aversarial sample recovery. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN) (2024)

    Google Scholar 

  39. Pellicer, A.L., Giatgong, K., Li, Y., Suri, N., Angelov, P.: UNICAD: a unified approach for attack detection, noise reduction and novel class identification. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN) (2024)

    Google Scholar 

  40. Shi, X., et al.: Robust convolutional neural networks against adversarial attacks on medical images. Pattern Recogn. 132, 108923 (2022)

    Article  Google Scholar 

  41. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  42. Dong, M., Chen, X., Wang, Y., Xu, C.: Random normalization aggregation for adversarial defense. In: Proceedings of Conference on Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  43. Cintas, C., et al.: Detecting adversarial attacks via subset scanning of autoencoder activations and reconstruction error. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI) (2020)

    Google Scholar 

  44. ) Han, X., Zhou, T., He, Y., Chen, Y., Chen, R., Zhou, W.: LSTM-based visibility detection for airport images in time series. In: Chinese Control Conference (CCC) (2021)

    Google Scholar 

  45. Han, P., Liu, Y., Cheng, Z.: Airport runway detection based on a combination of complex convolution and ResNet for PolSAR images. In: SAR in Big Data Era (BIGSARDATA) (2021)

    Google Scholar 

  46. Caldarola, D., Caputo, B., Ciccone, M.: Improving generalization in federated learning by seeking flat minima. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13683, pp. 654–672. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_38

    Chapter  Google Scholar 

  47. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Proceedings of Machine Learning and Systems (MLSys) (2020)

    Google Scholar 

  48. Gao, L., Fu, H., Li, L., Chen, Y., Xu, M., Xu, C.-Z.: FedDC: federated learning with non-IID data via local drift decoupling and correction. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  49. Liu, Y., et al.: Paddleseg: a high-efficient development toolkit for image segmentation, arXiv preprint arXiv: 2101.06175 (2021)

  50. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  51. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  52. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: The British Machine Vision Conference (BMVC) (2016)

    Google Scholar 

  53. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  54. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization, arXiv preprint arXiv:1607.06450 (2016)

  55. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization, arXiv preprint arXiv:1607.08022 (2016)

  56. Wu, Y., He, K.: Group normalization. In: Proceedings of European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

Download references

Acknowledgment

Research supported by the UKRI Trustworthy Autonomous Systems Node in Security/EPSRC Grant EP/V026763/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Angelov, P., Yu, Z., Lopez Pellicer, A., Suri, N. (2024). Federated Adversarial Learning for Robust Autonomous Landing Runway Detection. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15021. Springer, Cham. https://doi.org/10.1007/978-3-031-72347-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72347-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72346-9

  • Online ISBN: 978-3-031-72347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics