IHCSurv: Effective Immunohistochemistry Priors for Cancer Survival Analysis in Gigapixel Multi-stain Whole Slide Images | SpringerLink
Skip to main content

IHCSurv: Effective Immunohistochemistry Priors for Cancer Survival Analysis in Gigapixel Multi-stain Whole Slide Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Recent cancer survival prediction approaches have made great strides in analyzing H&E-stained gigapixel whole-slide images. However, methods targeting the immunohistochemistry (IHC) modality remain largely unexplored. We remedy this methodological gap and propose IHCSurv, a new framework that leverages IHC-specific priors to improve downstream survival prediction. We use these priors to guide our model to the most prognostic tissue regions and simultaneously enrich local features. To address drawbacks in recent approaches related to limited spatial context and cross-regional relation modeling, we propose a spatially-constrained spectral clustering algorithm that preserves spatial context alongside an efficient tissue region encoder that facilitates information transfer across tissue regions both within and between images. We evaluate our framework on a multi-stain IHC dataset of pancreatic cancer patients, where IHCSurv markedly outperforms existing state-of-the-art survival prediction methods. Our code is available on Github.

Y. Zhang and H. Chao—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atabansi, C.C., Nie, J., Liu, H., Song, Q., Yan, L., Zhou, X.: A survey of Transformer applications for histopathological image analysis: New developments and future directions. BioMedical Engineering OnLine 22(1),  96 (2023)

    Article  Google Scholar 

  2. Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., et al.: QuPath: Open source software for digital pathology image analysis. Scientific Reports 7(1),  1–7 (2017)

    Article  Google Scholar 

  3. Bug, D., Feuerhake, F., Merhof, D.: Foreground extraction for histopathological whole slide imaging. In: Bildverarbeitung für die Medizin 2015: Algorithmen-Systeme-Anwendungen. pp. 419–424. Springer (2015)

    Google Scholar 

  4. Chen, R.J., Chen, C., Li, Y., Chen, T.Y., Trister, A.D., Krishnan, R.G., Mahmood, F.: Scaling vision Transformers to gigapixel images via hierarchical self-supervised learning. In: CVPR. pp. 16144–16155 (2022)

    Google Scholar 

  5. Chen, R.J., Lu, M.Y., Shaban, M., Chen, C., Chen, T.Y., Williamson, D.F., Mahmood, F.: Whole slide images are 2D point clouds: Context-aware survival prediction using patch-based graph convolutional networks. In: MICCAI. pp. 339–349. Springer (2021)

    Google Scholar 

  6. Di, D., Zhang, J., Lei, F., Tian, Q., Gao, Y.: Big-hypergraph factorization neural network for survival prediction from whole slide image. IEEE Transactions on Image Processing 31, 1149–1160 (2022)

    Article  Google Scholar 

  7. Dwivedi, C., Nofallah, S., Pouryahya, M., Iyer, J., Leidal, K., et al.: Multi stain graph fusion for multimodal integration in pathology. In: CVPR. vol. 2021, pp. 1835–1845 (2021)

    Google Scholar 

  8. Foersch, S., Glasner, C., Woerl, A.C., Eckstein, M., Wagner, D.C., Schulz, S., Kellers, F., Fernandez, A., Tserea, K., Kloth, M., et al.: Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer. Nature Medicine 29(2), 430–439 (2023)

    Article  Google Scholar 

  9. Huang, Z., Chai, H., Wang, R., Wang, H., Yang, Y., Wu, H.: Integration of patch features through self-supervised learning and Transformer for survival analysis on whole slide images. In: MICCAI. pp. 561–570. Springer (2021)

    Google Scholar 

  10. Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on whole slide pathological images. In: MICCAI. pp. 174–182. Springer (2018)

    Google Scholar 

  11. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nature Biomedical Engineering 5(6), 555–570 (2021)

    Article  Google Scholar 

  12. Mi, H., Sivagnanam, S., Betts, C.B., Liudahl, S.M., Jaffee, E.M., Coussens, L.M., Popel, A.S.: Quantitative spatial profiling of immune populations in pancreatic ductal adenocarcinoma reveals tumor microenvironment heterogeneity and prognostic biomarkers. Cancer Research 82(23), 4359–4372 (2022)

    Article  Google Scholar 

  13. Muhammad, H., Xie, C., Sigel, C.S., Doukas, M., Alpert, L., Simpson, A.L., Fuchs, T.J.: EPIC-survival: End-to-end part inferred clustering for survival analysis, with prognostic stratification boosting. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  14. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. Computer Graphics and Applications 21(5), 34–41 (2001)

    Article  Google Scholar 

  15. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., et al.: TransMIL: Transformer based correlated multiple instance learning for whole slide image classification. NeurIPS 34, 2136–2147 (2021)

    Google Scholar 

  16. Shao, Z., Chen, Y., Bian, H., Zhang, J., Liu, G., Zhang, Y.: HVTSurv: Hierarchical vision Transformer for patient-level survival prediction from whole slide image. In: AAAI. vol. 37, pp. 2209–2217 (2023)

    Google Scholar 

  17. Wood, R., Domingo, E., Sirinukunwattana, K., Lafarge, M.W., Koelzer, V.H., Maughan, T.S., Rittscher, J.: Joint prediction of response to therapy, molecular traits, and spatial organisation in colorectal cancer biopsies. In: MICCAI. pp. 758–767. Springer (2023)

    Google Scholar 

  18. Yan, R., Lv, Z., Yang, Z., Lin, S., Zheng, C., Zhang, F.: Sparse and hierarchical Transformer for survival analysis on whole slide images. IEEE Journal of Biomedical and Health Informatics (2023)

    Google Scholar 

  19. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Medical Image Analysis 65, 101789 (2020)

    Article  Google Scholar 

  20. Zadeh, S.G., Schmid, M.: Bias in cross-entropy-based training of deep survival networks. TPAMI 43(9), 3126–3137 (2020)

    Article  Google Scholar 

  21. Zhu, X., Yao, J., Huang, J.: Deep convolutional neural network for survival analysis with pathological images. In: BIBM. pp. 544–547. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yejia Zhang or Yun Bian .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2222 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2024). IHCSurv: Effective Immunohistochemistry Priors for Cancer Survival Analysis in Gigapixel Multi-stain Whole Slide Images. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics