Enhancing Model Interpretability Through Interactive Visual Analysis and Counterfactual Explanation Methods | SpringerLink
Skip to main content

Enhancing Model Interpretability Through Interactive Visual Analysis and Counterfactual Explanation Methods

  • Conference paper
  • First Online:
Cooperative Design, Visualization, and Engineering (CDVE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15158))

  • 378 Accesses

Abstract

Counterfactual explanation is a post-modeling technique that helps users manipulate input features to achieve desired model decisions. This study employs counterfactual explanations to help users understand predictive outcomes and their underlying reasons. By reversing model decisions, user issues can be addressed. We developed a visual analysis framework combining machine learning algorithms and visual analytics. And our primary efforts are outlined as follows: Establish a visual analysis framework combining machine learning algorithms and visual analysis. Use counterfactual interpretation, we improved model interpretability and helped users understand prediction results. Design visualization views according to the visual analysis tasks derived from user needs based on machine learning models, and designed counterfactual explanation operation views for model decision instances. Integrate the visual analysis view, realize the interactive visual analysis system CFEVis based on the credit approval data prediction model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2019)

    Article  Google Scholar 

  2. Berg, D.: Bankruptcy prediction by generalized additive models. Appl. Stoch. Model. Bus. Ind. 23, 129–143 (2006)

    Article  MathSciNet  Google Scholar 

  3. Berk, R.A., Bleich, J.: Statistical procedures for forecasting criminal behavior. Criminol. Public Policy 12, 513–544 (2013)

    Article  Google Scholar 

  4. Biran, O., Cotton, C.V.: Explanation and justification in machine learning: a survey (2017)

    Google Scholar 

  5. Boehmke, B.C., Greenwell, B.M.: Interpretable machine learning. In: Hands-On Machine Learning with R (2019)

    Google Scholar 

  6. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015)

    Google Scholar 

  7. Cheng, F., Ming, Y., Qu, H.: DECE: decision explorer with counterfactual explanations for machine learning models. IEEE Trans. Visual Comput. Graphics 27, 1438–1447 (2020)

    Article  Google Scholar 

  8. Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning. Commun. ACM 63, 68–77 (2018)

    Article  Google Scholar 

  9. van den Elzen, S., van Wijk, J.J.: BaobabView: interactive construction and analysis of decision trees. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 151–160 (2011)

    Google Scholar 

  10. Genuer, R., Poggi, J.M., Tuleau-Malot, C.: Variable selection using random forests. Pattern Recognit. Lett. 31, 2225–2236 (2010)

    Article  Google Scholar 

  11. Gomez, O., Holter, S., Yuan, J., Bertini, E.: ViCE: visual counterfactual explanations for machine learning models. In: Proceedings of the 25th International Conference on Intelligent User Interfaces (2020)

    Google Scholar 

  12. Krause, J., Dasgupta, A., Swartz, J., Aphinyanagphongs, Y., Bertini, E.: A workflow for visual diagnostics of binary classifiers using instance-level explanations. 2017 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 162–172 (2017)

    Google Scholar 

  13. Liu, S., Xiao, J., Liu, J., Wang, X., Wu, J., Zhu, J.: Visual diagnosis of tree boosting methods. IEEE Trans. Visual Comput. Graphics 24, 163–173 (2018)

    Article  Google Scholar 

  14. Looveren, A.V., Klaise, J.: Interpretable counterfactual explanations guided by prototypes. ArXiv abs/1907.02584 (2019)

    Google Scholar 

  15. Pühringer, M., Hinterreiter, A.P., Streit, M.: InstanceFlow: visualizing the evolution of classifier confusion at the instance level. In: 2020 IEEE Visualization Conference (VIS), pp. 291–295 (2020)

    Google Scholar 

  16. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  17. Tamagnini, P., Krause, J., Dasgupta, A., Bertini, E.: Interpreting black-box classifiers using instance-level visual explanations. In: Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics (2017)

    Google Scholar 

  18. Taylan, P., Weber, G.W., Beck, A.: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology. Optimization 56, 675–698 (2007)

    Article  MathSciNet  Google Scholar 

  19. Thomas, J.J., Cook, K.A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics (2005)

    Google Scholar 

  20. Yuan, J., Chen, C., Yang, W., Liu, M., Xia, J., Liu, S.: A survey of visual analytics techniques for machine learning. Comput. Visual Media 7, 3–36 (2020)

    Article  Google Scholar 

  21. Zhao, X., Wu, Y., Lee, D.L., Cui, W.: IForest: interpreting random forests via visual analytics. IEEE Trans. Vis. Comput. Graph. 25, 407–416 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansu Pu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lan, H. et al. (2024). Enhancing Model Interpretability Through Interactive Visual Analysis and Counterfactual Explanation Methods. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2024. Lecture Notes in Computer Science, vol 15158. Springer, Cham. https://doi.org/10.1007/978-3-031-71315-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71315-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71314-9

  • Online ISBN: 978-3-031-71315-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics