Abstract
As robot swarms are increasingly deployed in the real-world, making them safe will be critical to improving adoption and trust. A robot swarm is composed of many individual robots each susceptible to failure at any given time, which may decrease the performance of the swarm as a whole. The ability to mitigate critical faults is therefore necessary. The difficulty with designing an effective mitigation strategy lies in the complexity of the swarm as a system, where individual interactions give rise to emergent behaviour. In this paper, we present a data-driven method to identify effective local actions available to faulty robots in the swarm. We make the assumption that robots are able to self-detect faults and that pre-coded actions are indeed available. An effective action should mitigate any negative impact of faults on overall swarm performance. We consider two intralogistics scenarios where the swarm must retrieve and deliver boxes. The first concerns single robot transport (one robot per box) and the second, collective transport (four robots per box). Our method is able to identify effective actions for particular fault types. We also consider the impact of actions across ratios of fault in the swarm. Interestingly, faults do not always benefit from mitigations, with mitigations causing overall lower system performance for certain fault types.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abeywickrama, D.B., et al.: Aeros: assurance of emergent behaviour in autonomous robotic swarms. arXiv preprint arXiv:2302.10292 (2023)
Bai, Y., Wang, J.: Fault detection and isolation using relative information for multi-agent systems. ISA Trans. 116, 182–190 (2021)
Bjerknes, J., Winfield, A.: On fault tolerance and scalability of swarm robotic systems 83, 431–444 (2013). https://doi.org/10.1007/978-3-642-32723-0_31
Bossens, D.M., Tarapore, D.: Rapidly adapting robot swarms with swarm map-based bayesian optimisation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9848–9854 (2021). https://doi.org/10.1109/ICRA48506.2021.9560958
Carrasco, R.A., Núñez, F., Cipriano, A.: Fault detection and isolation in cooperative mobile robots using multilayer architecture and dynamic observers. Robotica 29(4), 555–562 (2011)
Carrillo-Zapata, D., et al.: Mutual shaping in swarm robotics: user studies in fire and rescue, storage organization, and bridge inspection. Front. Robot. AI 7, 53 (2020)
Christensen, A.L., OGrady, R., Dorigo, M.: From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13(4), 754–766 (2009)
Gallehdari, Z., Meskin, N., Khorasani, K.: An h\(^\infty \) cooperative fault recovery control of multi-agent systems. Automatica 84, 101–108 (2017)
Ghedini, C., Ribeiro, C., Sabattini, L.: Toward fault-tolerant multi-robot networks. Networks 70(4), 388–400 (2017)
Guo, M., Dimarogonas, D.V., Johansson, K.H.: Distributed real-time fault detection and isolation for cooperative multi-agent systems. In: 2012 American Control Conference (ACC), pp. 5270–5275. IEEE (2012)
Hogg, E., Harvey, D., Hauert, S., Richards, A.: Social exploration in robot swarms. In: Bourgeois, J., et al. (ed.) Distributed Autonomous Robotic Systems, DARS 2022, SPAR, vol. 28, pp. 69–82. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-51497-5_6
Jones, S., Hauert, S.: Frappe: fast fiducial detection on low cost hardware. J. Real-Time Image Proc. 20(6), 119 (2023)
Jones, S., Milner, E., Sooriyabandara, M., Hauert, S.: Distributed situational awareness in robot swarms. Adv. Intell. Syst. 2(11), 2000110 (2020)
Jones, S., Milner, E., Sooriyabandara, M., Hauert, S.: Dots: an open testbed for industrial swarm robotic solutions. arXiv preprint arXiv:2203.13809 (2022)
Lau, H., Bate, I., Cairns, P., Timmis, J.: Adaptive data-driven error detection in swarm robotics with statistical classifiers. Robot. Auton. Syst. 59(12), 1021–1035 (2011)
Lee, S., Milner, E., Hauert, S.: A data-driven method for metric extraction to detect faults in robot swarms. IEEE Robot. Autom. Lett. 7(4), 10746–10753 (2022). https://doi.org/10.1109/LRA.2022.3189789
Minelli, M., Panerati, J., Kaufmann, M., Ghedini, C., Beltrame, G., Sabattini, L.: Self-optimization of resilient topologies for fallible multi-robots. Robot. Auton. Syst. 124, 103384 (2020)
Nachar, N.: The mann-whitney u: a test for assessing whether two independent samples come from the same distribution. Tutorials Quant. Methods Psychol. 4 (2008). https://doi.org/10.20982/tqmp.04.1.p013
Neupane, A., Goodrich, M.A.: Learning resilient swarm behaviors via ongoing evolution. In: Dorigo, M., et al. (ed.) Swarm Intelligence, ANTS 2022, LNCS, vol. 13491, pp. 155–170. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20176-9_13
O’Keeffe, J., Tarapore, D., Millard, A.G., Timmis, J.: Fault diagnosis in robot swarms: an adaptive online behaviour characterisation approach. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)
Oladiran, O.: Fault recovery in swarm robotics systems using learning algorithms learning algorithms (2019)
Parker, L.: Alliance: an architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998). https://doi.org/10.1109/70.681242
Penders, J., et al.: A robot swarm assisting a human fire-fighter. Adv. Robot. 25, 93–117 (2011). https://doi.org/10.1163/016918610X538507
Putter, R., Nitschke, G.: Evolving morphological robustness for collective robotics. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)
Şahin, E.: Swarm robotics: From sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics, pp. 10–20. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2
Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7, 36 (2020)
Shiliang, S., Ting, W., Chen, Y., Xiaofan, L., Hai, Z.: Distributed fault detection and isolation for flocking in a multi-robot system with imperfect communication. Int. J. Adv. Rob. Syst. 11(6), 86 (2014)
Subha, N.A.M., Mahyuddin, M.N.: Distributed adaptive cooperative control with fault compensation mechanism for heterogeneous multi-robot system. IEEE Access 9, 128550–128563 (2021)
Tarapore, D., Lima, P.U., Carneiro, J., Christensen, A.L.: To err is robotic, to tolerate immunological: fault detection in multirobot systems. Bioinspiration Biomimetics 10(1), 016014 (2015)
Tarapore, D., Timmis, J., Christensen, A.L.: Fault detection in a swarm of physical robots based on behavioral outlier detection. IEEE Trans. Rob. 35(6), 1516–1522 (2019)
Timmis, J., Ismail, A.R., Bjerknes, J., Winfield, A.: An immune-inspired swarm aggregation algorithm for self-healing swarm robotic system. Biosystems 146 (2016). https://doi.org/10.1016/j.biosystems.2016.04.001
Vassev, E., Sterritt, R., Rouff, C., Hinchey, M.: Swarm technology at NASA: building resilient systems. IT Professional 14(2), 36–42 (2012)
Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science (New York, N.Y.) 343, 754–758 (2014)
Winfield, A.F., Nembrini, J.: Safety in numbers: fault-tolerance in robot swarms. Int. J. Model. Ident. Control 1(1), 30–37 (2006)
Acknowledgements
This work was supported by the US Air Force Office of Scientific Research, European Office of Aerospace Research and Development, the UKRI Trustworthy Autonomous Systems Node in Functionality (EP/V026518/1), and the European Union under Grant Agreement 101070918 and UKRI grant number 10038942.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, S., Hauert, S. (2024). A Data-Driven Method to Identify Fault Mitigation Strategies in Robot Swarms. In: Hamann, H., et al. Swarm Intelligence. ANTS 2024. Lecture Notes in Computer Science, vol 14987. Springer, Cham. https://doi.org/10.1007/978-3-031-70932-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-70932-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70931-9
Online ISBN: 978-3-031-70932-6
eBook Packages: Computer ScienceComputer Science (R0)