Intelligent Handling of Noise in Federated Learning with Co-training for Enhanced Diagnostic Precision | SpringerLink
Skip to main content

Intelligent Handling of Noise in Federated Learning with Co-training for Enhanced Diagnostic Precision

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2024)

Abstract

Federated learning (FL) allows multiple distributed clients to train a model while protecting their data. Medical data, especially brain MRIs, might be misdiagnosed due to capture noise and scanner abnormalities. Existing noise-handling technologies use data transmission, raising communication burdens and privacy risks. To address these challenges, we propose a novel Adaptive Sample Weighting Federated Learning (ASW-FL) approach incorporating co-training into the FL framework. The local and global models in FL have different learning abilities, which we use to our advantage. The two models “teach each other” to ignore noisy labels by exchanging samples with their confident predictions. Our method improved accuracy from 83.05% to 85.20% using various aggregation algorithms on a benchmark dataset of 1300 brain MRIs and our own Biobank UK data. Our methodology for accurate, privacy-preserving medical image analysis is adequate. The proposed model is precise but requires more processing resources, making it more appropriate for powerful servers than personal devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jamil, F., Hameed, I.A.: Toward intelligent open-ended questions evaluation based on predictive optimization. Expert Syst. Appl. 120640 (2023)

    Google Scholar 

  2. Lotter, W., et al.: Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat. Med. 27(2), 244–249 (2021)

    Article  Google Scholar 

  3. Babar, F.F., Lukui, S., Babar, F.F., Muhammad, F.: Enhanced weather forecasting using the meteronet model: a comprehensive ensemble approach. Int. J. Adv. Multidisc. Res. 10(8), 20–38 (2023)

    Google Scholar 

  4. Wang, Y., Liu, L., Wang, C.: Trends in using deep learning algorithms in biomedical prediction systems. Front. Neurosci. 17, 1256351 (2023)

    Article  Google Scholar 

  5. Adnan, M., Kalra, S., Cresswell, J.C., Taylor, G.W., Tizhoosh, H.R.: Federated learning and differential privacy for medical image analysis. Sci. Rep. 12(1), 1953 (2022)

    Article  Google Scholar 

  6. Nguyen, D.C., et al.: Federated learning for smart healthcare: a survey. ACM Comput. Surv. (CSUR) 55(3), 1–37 (2022)

    Article  Google Scholar 

  7. Jamil, F., Ahmad, S., Whangbo, T.K., Muthanna, A., Kim, D.-H.: Improving blockchain performance in clinical trials using intelligent optimal transaction traffic control mechanism in smart healthcare applications. Comput. Industr. Eng. 170, 108327 (2022)

    Article  Google Scholar 

  8. Jamil, F., Qayyum, F., Alhelaly, S., Javed, F., Muthanna, A.: Intelligent microservice based on blockchain for healthcare applications. Comput. Mater. Continua 69(2) (2021)

    Google Scholar 

  9. Jamil, F., Kim, D.H.: Enhanced Kalman filter algorithm using fuzzy inference for improving position estimation in indoor navigation. J. Intell. Fuzzy Syst. 40(5), 8991–9005 (2021)

    Article  Google Scholar 

  10. Zhu, C., Chen, W., Peng, T., Wang, Y., Jin, M.: Hard sample aware noise robust learning for histopathology image classification. IEEE Trans. Med. Imaging 41(4), 881–894 (2021)

    Article  Google Scholar 

  11. Liu, J., Li, R., Sun, C.: Co-correcting: noise-tolerant medical image classification via mutual label correction. IEEE Trans. Med. Imaging 40(12), 3580–3592 (2021)

    Article  Google Scholar 

  12. Yang, S., Park, H., Byun, J., Kim, C.: Robust federated learning with noisy labels. IEEE Intell. Syst. 37(2), 35–43 (2022)

    Article  Google Scholar 

  13. Tam, K., Li, L., Han, B., Xu, C., Fu, H.: Federated noisy client learning. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  14. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100 (1998)

    Google Scholar 

  15. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  16. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  17. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Article  Google Scholar 

  18. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  19. Chen, Z., Yang, C., Zhu, M., Peng, Z., Yuan, Y.: Personalized retrogress-resilient federated learning toward imbalanced medical data. IEEE Trans. Med. Imaging 41(12), 3663–3674 (2022)

    Article  Google Scholar 

  20. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. Med. Image Anal. 65, 101759 (2020)

    Article  Google Scholar 

  21. Patrini, G., Rozza, A., Menon, A.K., Nock, R., Qu, L.: Making deep neural networks robust to label noise: a loss correction approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944–1952 (2017)

    Google Scholar 

  22. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  23. Menon, A.K., Rawat, A.S., Reddi, S.J., Kumar, S.: Can gradient clipping mitigate label noise? In: International Conference on Learning Representations (2019)

    Google Scholar 

  24. Lie, J., et al.: Improving medical images classification with label noise using dual-uncertainty estimation. IEEE Trans. Med. Imaging 41(6), 1533–1546 (2022)

    Article  Google Scholar 

  25. Goldberger, J., Ben-Reuven, E.: Training deep neural-networks using a noise adaptation layer. In: International Conference on Learning Representations (2022)

    Google Scholar 

  26. Jiang, L., Zhou, Z., Leung, T., Li, L.-J., Fei-Fei, L.: MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference on Machine Learning, pp. 2304–2313. PMLR (2018)

    Google Scholar 

  27. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080 (2014)

  28. Xue, C., Yu, L., Chen, P., Dou, Q., Heng, P.-A.: Robust medical image classification from noisy labeled data with global and local representation guided co-training. IEEE Trans. Med. Imaging 41(6), 1371–1382 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farah Farid Babar or Faisal Jamil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babar, F.F., Jamil, F., Babar, F.F. (2024). Intelligent Handling of Noise in Federated Learning with Co-training for Enhanced Diagnostic Precision. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2024. Lecture Notes in Computer Science(), vol 14810. Springer, Cham. https://doi.org/10.1007/978-3-031-70816-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70816-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70815-2

  • Online ISBN: 978-3-031-70816-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics